Cargando…

A Novel Prognostic Model Based on Seven Necroptosis-Related miRNAs for Predicting the Overall Survival of Patients with Lung Adenocarcinoma

Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related deaths worldwide. This study is aimed at constructing a risk scoring model based on necroptosis-related miRNAs to predict prognosis of LUAD. Expression profile of miRNA in LUAD was downloaded from The Cancer Genome Atlas...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Xiaohua, Wang, Guangyao, Pei, Kai, Mo, Chunmei, Rong, Zhen, Xu, Guanglan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972154/
https://www.ncbi.nlm.nih.gov/pubmed/35372581
http://dx.doi.org/10.1155/2022/3198590
Descripción
Sumario:Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related deaths worldwide. This study is aimed at constructing a risk scoring model based on necroptosis-related miRNAs to predict prognosis of LUAD. Expression profile of miRNA in LUAD was downloaded from The Cancer Genome Atlas (TCGA) database. We screened the differentially expressed necroptosis-related miRNAs between LUAD patients and normal samples, thus constructed a seven miRNA-based risk stratification on the basis of the TGCA cohort. This risk stratification was prove to be effective in predicting the overall survival (OS) of patients with LUAD. Furthermore, we constructed a nomogram model based on the combination of risk characteristics and clinicopathological features, which was also prove to be accurate and efficient in predicting OS of LUAD patients. Functional enrichment analyses on the targeted genes of these miRNAs with prognostic value were carried out. Results indicated that these targeted genes were closely related to the development and metastasis of tumors. In summary, our research has developed a prognostic model based on the expression of miRNAs related to necroptosis. This model might be used to predict the prognosis of LUAD accurately, which might be helpful in improving treatment efficacy of LUAD.