Cargando…

Identification of a novel compound heterozygous CYP4V2 variant in a patient with autosomal recessive retinitis pigmentosa

Retinitis pigmentosa (RP) belongs to a family of retinal disorders that is characterized by the progressive degeneration of rod and cone photoreceptors. The aim of the present study was to screen for possible disease-causing genetic variants in a non-consanguineous Chinese family with non-syndromic...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Tongdan, Wang, Ting, Zhen, Fangyuan, Dong, Shuqian, Gong, Bo, Zhang, Houbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8972287/
https://www.ncbi.nlm.nih.gov/pubmed/35386112
http://dx.doi.org/10.3892/br.2022.1523
Descripción
Sumario:Retinitis pigmentosa (RP) belongs to a family of retinal disorders that is characterized by the progressive degeneration of rod and cone photoreceptors. The aim of the present study was to screen for possible disease-causing genetic variants in a non-consanguineous Chinese family with non-syndromic autosomal recessive RP. Whole-exome sequencing (WES) was performed in samples from the affected individual (the proband) and those from the two children of the proband. A novel compound heterozygous variant of c.C958T (p.R320X) and c.G1355A (p.R452H) in the Cytochrome P450 family 4 subfamily V member 2 (CYP4V2) gene was identified through WES. Subsequently, this variant was validated by direct Sanger sequencing. This compound heterozygous variant was found to be absent from other unaffected family members and 400 ethnically-matched healthy control individuals. In addition, this compound variant was co-segregated with the RP phenotype in an autosomal recessive manner. In silico analysis revealed that both c.C958T (p.R320X) and c.G1355A (p.R452H) could compromise the protein function of CYP4V2. These results strongly suggest this compound variant to be a disease-causing variant, which expands upon the spectrum of currently known CYP4V2 genetic variants associated with retinal diseases.