Cargando…

NanoTafla Nanocomposite as a Novel Low-Cost and Eco-Friendly Sorbent for Strontium and Europium Ions

[Image: see text] Now the wide use of nanooxides is attributed to their remarkable collection of properties. Nanocomposites have an impressive variety of important applications. A thermal decomposition approach provides a more optimistic method for nanocrystal synthesis due to the low cost, high eff...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu Elgoud, Elsayed M., Aly, Mohamed I., Hamed, Mostafa M., Nayl, AbdElAziz A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973054/
https://www.ncbi.nlm.nih.gov/pubmed/35382267
http://dx.doi.org/10.1021/acsomega.1c07255
Descripción
Sumario:[Image: see text] Now the wide use of nanooxides is attributed to their remarkable collection of properties. Nanocomposites have an impressive variety of important applications. A thermal decomposition approach provides a more optimistic method for nanocrystal synthesis due to the low cost, high efficiency, and expectations for large-scale production. Therefore, in this study a new eco-friendly nanooxide composite with sorption characteristics for europium (Eu(III)) and strontium (Sr(II)) was synthesized by a one-step thermal treatment process using earth-abundant tafla clay as a starting material to prepare a modified tafla (M-Taf) nanocomposite. The synthesized nancomposite was characterized by different techniques before and after sorption processes. Different factors that affected the sorption behavior of Eu(III) and Sr(II) in aqueous media by the M-Taf nanocomposite were studied. The results obtained illustrated that the kinetics of sorption of Eu(III) and Sr(II) by the M-Taf nanocomposite are obeyed according to the pseudo-second order and controlled by a Langmuir isotherm model with maximum sorption capacities (Q(max)) of 25.5 and 23.36 mg/g for Eu(III) and Sr(II), respectively. Also, this novel low-cost and eco-friendly sorbent has promising properties and can be used to separate and retain some radionuclides in different applications.