Cargando…
Optimizing the Fabric Architecture and Effect of γ-Radiation on the Mechanical Properties of Jute Fiber Reinforced Polyester Composites
[Image: see text] The fiber architecture can significantly influence the rate of impregnation of a resin in making composites and the load-bearing ability of individual fibers on testing of the loading directions. Moreover, achieving the maximum mechanical performance of a natural fiber composite se...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973062/ https://www.ncbi.nlm.nih.gov/pubmed/35382272 http://dx.doi.org/10.1021/acsomega.1c06241 |
Sumario: | [Image: see text] The fiber architecture can significantly influence the rate of impregnation of a resin in making composites and the load-bearing ability of individual fibers on testing of the loading directions. Moreover, achieving the maximum mechanical performance of a natural fiber composite selection of yarn liner density and optimization of fabric structure and further modification of the composites remains a great challenge for the composite research community. In this study, a number of jute-based woven derivatives (plain, 2/1 twill, 3/1 twill, zigzag based on a 2/2 twill, and diamond based on a 2/2 twill) have been constructed from similar linear densities of yarn. The effect of the fabric architecture and further modification of optimized composites by applying γ-radiation is also explained in this study. The experimental results show a 54% increase in tensile strength, a 75% increase in tensile modulus, a 69% increase in flexural strength, a 124% increase in flexural modulus, and 64% increase in impact strength of twill (3/1) structured jute fiber polyester composites in comparison to other plain and twill structured composites. A further mechanical improvement of around 20–30% is possible for the optimized twill structured composites by applying γ-radiation on the composites. An FTIR, TGA, and SEM study confirms the chemical, thermal, and fractographic changes after applying the modification of composites. |
---|