Cargando…

Insights from Self-Assembled Aggregates of Amyloid β Peptides on Gold Surfaces

[Image: see text] Amyloid β (Aβ) peptides mutated at different positions using a cysteine moiety assemble on Au electrodes using the thiol functionality of cysteine. Self-assembled monolayers (SAMs) of Aβ on Au surfaces can act as abiological platforms that allow the mimicking of fibrils and oligome...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Chinmay, Roy, Madhuparna, Dey, Somdatta Ghosh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973063/
https://www.ncbi.nlm.nih.gov/pubmed/35382274
http://dx.doi.org/10.1021/acsomega.1c06056
Descripción
Sumario:[Image: see text] Amyloid β (Aβ) peptides mutated at different positions using a cysteine moiety assemble on Au electrodes using the thiol functionality of cysteine. Self-assembled monolayers (SAMs) of Aβ on Au surfaces can act as abiological platforms that allow the mimicking of fibrils and oligomeric Aβ via the formation of controlled large and small peptide aggregates. These Aβ constructs bind with heme and Cu and exhibit different reactivities. These abiological platforms can also be used to investigate potential drugs that can interact with heme and Cu-Aβ. SAM formation of Aβ mutants allows the study of different morphology and structure as well as behavior changes on binding with different metals and cytochrome c (Cyt c). This review provides a detailed insight into the structure and reactivities of various Aβ aggregated on Au electrodes mimicking the cell membrane.