Cargando…

Catalytic Cracking of n-Dodecane to Chemicals: Effect of Variable-Morphological ZSM-5 Zeolites Synthesized Using Various Silica Sources

[Image: see text] This study emphasizes tuning the synthesis conditions of MFI zeolites to achieve better catalytic properties by optimizing the mesoporosity, the balance between Brønsted and Lewis sites, and the zeolite particle sizes. The MFI zeolites were hydrothermally synthesized at various tem...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanhoob, Mohammed A., Shafei, Emad N., Khan, Abuzar, Nasser, Galal A., Bakare, Idris, Muraza, Oki, Al-Bahar, Mohammed Z., Al-Jishi, Ali N., Al-Badairy, Hameed H., Ummer, Aniz C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973090/
https://www.ncbi.nlm.nih.gov/pubmed/35382321
http://dx.doi.org/10.1021/acsomega.1c06882
Descripción
Sumario:[Image: see text] This study emphasizes tuning the synthesis conditions of MFI zeolites to achieve better catalytic properties by optimizing the mesoporosity, the balance between Brønsted and Lewis sites, and the zeolite particle sizes. The MFI zeolites were hydrothermally synthesized at various temperatures employing different silica sources. The synthesis temperature was varied between 110 to 180 °C at constant synthesis time (15 h). Different silicon sources led to variations in structure, morphology, and size of the MFI zeolite along with tuned Lewis and Brønsted acid sites in parallel correlation with shape selectivity of the reaction. The catalytic activities of synthesized zeolites were investigated in the catalytic cracking of n-dodecane to produce value-added chemicals. The zeolite synthesized at 180 °C using fumed silica presented the highest catalytic conversion (96.6%), while maximum light olefin gaseous products (73.1%) were obtained for the sample synthesized at 140 °C using tetraethyl orthosilicate as the silica source. The MFI zeolite synthesized at 180 °C employing tetraethyl orthosilicate as a silica source facilitated the formation of both naphthenes and aromatics (71.3%) as major liquid products.