Cargando…
Collaborative Approach between Explainable Artificial Intelligence and Simplified Chemical Interactions to Explore Active Ligands for Cyclin-Dependent Kinase 2
[Image: see text] To improve virtual screening for drug discovery, we present a collaborative approach between explainable artificial intelligence (AI) and simplified chemical interaction scores to efficiently search for active ligands bound to the target receptor. In particular, we focus on cyclin-...
Autores principales: | Shimazaki, Tomomi, Tachikawa, Masanori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973106/ https://www.ncbi.nlm.nih.gov/pubmed/35382271 http://dx.doi.org/10.1021/acsomega.1c06976 |
Ejemplares similares
-
Decomposition analysis on the excitation behaviors of thiazolothiazole (TTz)-based dyes via the time-dependent dielectric density functional theory approach
por: Naito, Takumi, et al.
Publicado: (2022) -
Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences
por: Feng, Jinchao, et al.
Publicado: (2020) -
Global gene network exploration based on explainable artificial intelligence approach
por: Park, Heewon, et al.
Publicado: (2020) -
Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation
por: Das, Nilakash, et al.
Publicado: (2023) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022)