Cargando…
Design and Analysis of Metal Oxides for CO(2) Reduction Using Machine Learning, Transfer Learning, and Bayesian Optimization
[Image: see text] We aim to achieve resource recycling by capturing and using CO(2) generated in a chemical production and disposal process. We focused on CO(2) conversion to CO by the reverse water gas shift–chemical looping (RWGS-CL) reaction. This reaction proceeds in two steps (H(2) + MO(x) ⇆ H(...
Autores principales: | Iwama, Ryo, Takizawa, Koji, Shinmei, Kenichi, Baba, Eisuke, Yagihashi, Noritoshi, Kaneko, Hiromasa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973119/ https://www.ncbi.nlm.nih.gov/pubmed/35382317 http://dx.doi.org/10.1021/acsomega.2c00461 |
Ejemplares similares
-
Integration of
Materials and Process Informatics:
Metal Oxide and Process Design for CO(2) Reduction
por: Iwama, Ryo, et al.
Publicado: (2022) -
Machine learning: a Bayesian and optimization perspective
por: Theodoridis, Sergios
Publicado: (2015) -
Machine learning: a Bayesian and optimization perspective
por: Theodoridis, Sergios
Publicado: (2020) -
Bayesian reasoning and machine learning
por: Barber, David
Publicado: (2012) -
Design of Experimental Conditions with Machine Learning
for Collaborative Organic Synthesis Reactions Using Transition-Metal
Catalysts
por: Ebi, Tomoya, et al.
Publicado: (2021)