Cargando…

Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)

The main pathological feature of acute lung injury (ALI) is pulmonary edema caused by increased permeability of pulmonary microvascular endothelial cells (PMVECs). LPS was has been confirmed to lead to cell damage and barrier dysfunction in PMVECs. Furthermore, receptor interacting protein 140 (RIP1...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qizheng, Wu, Qiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973626/
https://www.ncbi.nlm.nih.gov/pubmed/35113002
http://dx.doi.org/10.1080/21655979.2022.2031403
_version_ 1784680078320336896
author Wang, Qizheng
Wu, Qiong
author_facet Wang, Qizheng
Wu, Qiong
author_sort Wang, Qizheng
collection PubMed
description The main pathological feature of acute lung injury (ALI) is pulmonary edema caused by increased permeability of pulmonary microvascular endothelial cells (PMVECs). LPS was has been confirmed to lead to cell damage and barrier dysfunction in PMVECs. Furthermore, receptor interacting protein 140 (RIP140) was discovered to be increased in LPS-induced human pulmonary microvascular endothelial cells (HPMECs), but the mechanism of RIP140 on LPS-induced HPMECs has not been investigated. In this study, an acute lung injury model was constructed in LPS-induced HPMECs. After RIP140 was downregulated, inflammation, apoptosis and cell permeability levels were detected by RT-qPCR, TUNEL staining and FITC-Dextran, respectively. Western blotting was used to detect the protein levels of related factors. The binding of RIP140 and C-terminal binding protein 2 (CTBP2) was predicted by database and verified by Co-IP. Subsequently, CTBP2 overexpression was transfected into cells and the above experiments were performed again. The results showed that inflammation, apoptosis and permeability levels of LPS-induced HPMECs were remarkably increased compared to the untreated control group. However, these levels were suppressed after RIP140 was silenced compared to the LPS-induced HPMECs group. Notably, the Co-IP study demonstrated that RIP140 and CTBP2 interacted with each other. Moreover, CTBP2 overexpression reversed the inhibitory effects of RIP140 silencing on LPS-induced inflammation, apoptosis and permeability levels in HPMECs. Together, the study found that interference of RIP140 could alleviate LPS-induced inflammation, apoptosis and permeability in HPMECs by regulating CTBP2.
format Online
Article
Text
id pubmed-8973626
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-89736262022-04-02 Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2) Wang, Qizheng Wu, Qiong Bioengineered Research Paper The main pathological feature of acute lung injury (ALI) is pulmonary edema caused by increased permeability of pulmonary microvascular endothelial cells (PMVECs). LPS was has been confirmed to lead to cell damage and barrier dysfunction in PMVECs. Furthermore, receptor interacting protein 140 (RIP140) was discovered to be increased in LPS-induced human pulmonary microvascular endothelial cells (HPMECs), but the mechanism of RIP140 on LPS-induced HPMECs has not been investigated. In this study, an acute lung injury model was constructed in LPS-induced HPMECs. After RIP140 was downregulated, inflammation, apoptosis and cell permeability levels were detected by RT-qPCR, TUNEL staining and FITC-Dextran, respectively. Western blotting was used to detect the protein levels of related factors. The binding of RIP140 and C-terminal binding protein 2 (CTBP2) was predicted by database and verified by Co-IP. Subsequently, CTBP2 overexpression was transfected into cells and the above experiments were performed again. The results showed that inflammation, apoptosis and permeability levels of LPS-induced HPMECs were remarkably increased compared to the untreated control group. However, these levels were suppressed after RIP140 was silenced compared to the LPS-induced HPMECs group. Notably, the Co-IP study demonstrated that RIP140 and CTBP2 interacted with each other. Moreover, CTBP2 overexpression reversed the inhibitory effects of RIP140 silencing on LPS-induced inflammation, apoptosis and permeability levels in HPMECs. Together, the study found that interference of RIP140 could alleviate LPS-induced inflammation, apoptosis and permeability in HPMECs by regulating CTBP2. Taylor & Francis 2022-02-03 /pmc/articles/PMC8973626/ /pubmed/35113002 http://dx.doi.org/10.1080/21655979.2022.2031403 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Wang, Qizheng
Wu, Qiong
Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title_full Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title_fullStr Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title_full_unstemmed Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title_short Knockdown of receptor interacting protein 140 (RIP140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating C-terminal binding protein 2 (CTBP2)
title_sort knockdown of receptor interacting protein 140 (rip140) alleviated lipopolysaccharide-induced inflammation, apoptosis and permeability in pulmonary microvascular endothelial cells by regulating c-terminal binding protein 2 (ctbp2)
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973626/
https://www.ncbi.nlm.nih.gov/pubmed/35113002
http://dx.doi.org/10.1080/21655979.2022.2031403
work_keys_str_mv AT wangqizheng knockdownofreceptorinteractingprotein140rip140alleviatedlipopolysaccharideinducedinflammationapoptosisandpermeabilityinpulmonarymicrovascularendothelialcellsbyregulatingcterminalbindingprotein2ctbp2
AT wuqiong knockdownofreceptorinteractingprotein140rip140alleviatedlipopolysaccharideinducedinflammationapoptosisandpermeabilityinpulmonarymicrovascularendothelialcellsbyregulatingcterminalbindingprotein2ctbp2