Cargando…
GATA binding protein 5 (GATA5) induces Rho GTPase activating protein 9 (ARHGAP9) to inhibit the malignant process of lung adenocarcinoma cells
Lung adenocarcinoma is the main cause of the excessive mortality for patients who lives with lung cancers. According to the GEPIA database analysis, GATA5 and ARHGAP9 were found to be low expressed in lung adenocarcinoma, and they were positively correlated, and in addition ARHGAP9 low expression wa...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973687/ https://www.ncbi.nlm.nih.gov/pubmed/35040754 http://dx.doi.org/10.1080/21655979.2022.2025695 |
Sumario: | Lung adenocarcinoma is the main cause of the excessive mortality for patients who lives with lung cancers. According to the GEPIA database analysis, GATA5 and ARHGAP9 were found to be low expressed in lung adenocarcinoma, and they were positively correlated, and in addition ARHGAP9 low expression was associated with poor prognosis in lung adenocarcinoma. Therefore, the present study focused on the effect of promoting GATA5 to induce ARHGAP9 on the malignant process of lung adenocarcinoma cells. The expressions of GATA5 and ARHGAP9 were measured with Western blot and RT-qPCR. With the adoption of CCK-8, EDU staining, transwell and colony formation, the cell viability, proliferation, invasion and tumorigenesis ability were detected, respectively. In addition, the wound healing and Western blot were employed to evaluate migration and metastasis-related proteins individually. Moreover, the luciferase activity as well as the binding of GATA5 and ARHGAP9 promoters were detected by luciferase report and ChIP. After further comprehensive assessments, the results confirmed that GATA5 could successfully activate ARHGAP9. Moreover, ARHGAP9 upregulation remarkably inhibited lung adenocarcinoma cell proliferation, invasion and migration as compared to the control group. More importantly, GATA5 silencing reversed the inhibitory effect of ARHGAP9 upregulation on the malignant progression of lung adenocarcinoma cells. To conclude, the present study successfully demonstrated for the first time that GATA5-induced ARHGAP9 upregulation has a protective effect on lung adenocarcinoma cells. |
---|