Cargando…

The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model

Acute respiratory distress syndrome (ARDS) can cause loss of alveolar-capillary membrane integrity and life-threatening immune responses. The underlying molecular mechanisms of ARDS remain unclear. N6-methyladenosine (m6A)-RNA modification plays an important part in many biological processes. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Fei, Liming, Sun, Gengyun, Sun, Juan, Wu, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973778/
https://www.ncbi.nlm.nih.gov/pubmed/35263199
http://dx.doi.org/10.1080/21655979.2022.2049473
_version_ 1784680115588825088
author Fei, Liming
Sun, Gengyun
Sun, Juan
Wu, Dong
author_facet Fei, Liming
Sun, Gengyun
Sun, Juan
Wu, Dong
author_sort Fei, Liming
collection PubMed
description Acute respiratory distress syndrome (ARDS) can cause loss of alveolar-capillary membrane integrity and life-threatening immune responses. The underlying molecular mechanisms of ARDS remain unclear. N6-methyladenosine (m6A)-RNA modification plays an important part in many biological processes. However, it is not clear whether ARDS alters RNA methylation in lung tissue. We tried to investigate the changes of m6A-RNA methylation in lung tissues of lipopolysaccharide (LPS)-induced ARDS mice. Lung tissue samples were collected to detect the expression of m6A factors through hematoxylin and eosin (HE) staining, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemical analysis and western blot. The overall m6A levels in lung tissue of ARDS in mouse were detected by UPLC-UV-MS. HE staining showed that the degree of the inflammatory response was more severe in the LPS-3 h group. The mRNA expression of YTHDF1, YTHDC1 and IGFBP3 was remarkably up-regulated at, respectively, 6, 6 and 12 h after LPS treatment. The mRNA expression of METTL16, FTO, METTL3, KIAA1429, RBM15, ALKBH5, YTHDF2, YTHDF3, YTHDC2 and IGFBP2 was significantly down-regulated at 24 h after LPS treatment. The protein expression of METTL16 and FTO increased, YTHDC1, IGFBP3 YTHDF1 and YTHDF3 showed a down-regulation trend after LPS induction. Overall m6A-RNA methylation levels were significantly increased at 6 h after LPS induction. In ARDS mice, LPS-induced m6A methylation may be involved in the expression regulation of inflammatory factors and may play important roles in the occurrence and development of lung tissue. It is suggested that m6A modification may be a promising therapeutic target for ARDS.
format Online
Article
Text
id pubmed-8973778
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-89737782022-04-02 The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model Fei, Liming Sun, Gengyun Sun, Juan Wu, Dong Bioengineered Research Paper Acute respiratory distress syndrome (ARDS) can cause loss of alveolar-capillary membrane integrity and life-threatening immune responses. The underlying molecular mechanisms of ARDS remain unclear. N6-methyladenosine (m6A)-RNA modification plays an important part in many biological processes. However, it is not clear whether ARDS alters RNA methylation in lung tissue. We tried to investigate the changes of m6A-RNA methylation in lung tissues of lipopolysaccharide (LPS)-induced ARDS mice. Lung tissue samples were collected to detect the expression of m6A factors through hematoxylin and eosin (HE) staining, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), immunohistochemical analysis and western blot. The overall m6A levels in lung tissue of ARDS in mouse were detected by UPLC-UV-MS. HE staining showed that the degree of the inflammatory response was more severe in the LPS-3 h group. The mRNA expression of YTHDF1, YTHDC1 and IGFBP3 was remarkably up-regulated at, respectively, 6, 6 and 12 h after LPS treatment. The mRNA expression of METTL16, FTO, METTL3, KIAA1429, RBM15, ALKBH5, YTHDF2, YTHDF3, YTHDC2 and IGFBP2 was significantly down-regulated at 24 h after LPS treatment. The protein expression of METTL16 and FTO increased, YTHDC1, IGFBP3 YTHDF1 and YTHDF3 showed a down-regulation trend after LPS induction. Overall m6A-RNA methylation levels were significantly increased at 6 h after LPS induction. In ARDS mice, LPS-induced m6A methylation may be involved in the expression regulation of inflammatory factors and may play important roles in the occurrence and development of lung tissue. It is suggested that m6A modification may be a promising therapeutic target for ARDS. Taylor & Francis 2022-03-09 /pmc/articles/PMC8973778/ /pubmed/35263199 http://dx.doi.org/10.1080/21655979.2022.2049473 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) ), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Paper
Fei, Liming
Sun, Gengyun
Sun, Juan
Wu, Dong
The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title_full The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title_fullStr The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title_full_unstemmed The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title_short The effect of N6-methyladenosine (m6A) factors on the development of acute respiratory distress syndrome in the mouse model
title_sort effect of n6-methyladenosine (m6a) factors on the development of acute respiratory distress syndrome in the mouse model
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973778/
https://www.ncbi.nlm.nih.gov/pubmed/35263199
http://dx.doi.org/10.1080/21655979.2022.2049473
work_keys_str_mv AT feiliming theeffectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT sungengyun theeffectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT sunjuan theeffectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT wudong theeffectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT feiliming effectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT sungengyun effectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT sunjuan effectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel
AT wudong effectofn6methyladenosinem6afactorsonthedevelopmentofacuterespiratorydistresssyndromeinthemousemodel