Cargando…

The impact of chemotherapy and survival prediction by machine learning in early Elderly Triple Negative Breast Cancer (eTNBC): a population based study from the SEER database

PURPOSE: We aimed to analysis the impact of chemotherapy and establish prediction models of prognosis in early elderly triple negative breast cancer (eTNBC) by using machine learning. METHODS: We enrolled 4,696 patients in SEER Database who were 70 years or older, diagnosed with primary early TNBC(l...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Kaiyan, Zhang, Jie, Yu, Yushuai, Lin, Yuxiang, Song, Chuangui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973884/
https://www.ncbi.nlm.nih.gov/pubmed/35361134
http://dx.doi.org/10.1186/s12877-022-02936-5
Descripción
Sumario:PURPOSE: We aimed to analysis the impact of chemotherapy and establish prediction models of prognosis in early elderly triple negative breast cancer (eTNBC) by using machine learning. METHODS: We enrolled 4,696 patients in SEER Database who were 70 years or older, diagnosed with primary early TNBC(larger than 5 mm), from 2010 to 2016. The propensity-score matched method was utilized to reduce covariable imbalance. Univariable and multivariable analyses were used to compare breast cancer-specific survival(BCSS) and overall survival(OS). Nine models were developed by machine learning to predict the 5-year OS and BCSS for patients received chemotherapy. RESULTS: Compared to matched patients in no-chemotherapy group, multivariate analysis showed a better survival in chemotherapy group. Stratified analyses by stage demonstrated that patients with stage II and stage III other than stage I could benefit from chemotherapy. Further investigation in stage II found that chemotherapy was a better prognostic indicator for patients with T2N0M0 and stage IIb, but not in T1N1M0. Patients with grade III could achieve a better survival by receiving chemotherapy, but those with grade I and II couldn’t. With 0.75 in 5-year BCSS and 0.81 in 5-year OS for AUC, the LightGBM outperformed other algorithms. CONCLUSION: For early eTNBC patients with stage I, T1N1M0 and grade I-II, chemotherapy couldn’t improve survival. Therefore, de-escalation therapy might be appropriate for selected patients. The LightGBM is a trustful model to predict the survival and provide precious systemic treatment for patients received chemotherapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12877-022-02936-5.