Cargando…

TBGA: a large-scale Gene-Disease Association dataset for Biomedical Relation Extraction

BACKGROUND: Databases are fundamental to advance biomedical science. However, most of them are populated and updated with a great deal of human effort. Biomedical Relation Extraction (BioRE) aims to shift this burden to machines. Among its different applications, the discovery of Gene-Disease Associ...

Descripción completa

Detalles Bibliográficos
Autores principales: Marchesin, Stefano, Silvello, Gianmaria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973894/
https://www.ncbi.nlm.nih.gov/pubmed/35361129
http://dx.doi.org/10.1186/s12859-022-04646-6
Descripción
Sumario:BACKGROUND: Databases are fundamental to advance biomedical science. However, most of them are populated and updated with a great deal of human effort. Biomedical Relation Extraction (BioRE) aims to shift this burden to machines. Among its different applications, the discovery of Gene-Disease Associations (GDAs) is one of BioRE most relevant tasks. Nevertheless, few resources have been developed to train models for GDA extraction. Besides, these resources are all limited in size—preventing models from scaling effectively to large amounts of data. RESULTS: To overcome this limitation, we have exploited the DisGeNET database to build a large-scale, semi-automatically annotated dataset for GDA extraction. DisGeNET stores one of the largest available collections of genes and variants involved in human diseases. Relying on DisGeNET, we developed TBGA: a GDA extraction dataset generated from more than 700K publications that consists of over 200K instances and 100K gene-disease pairs. Each instance consists of the sentence from which the GDA was extracted, the corresponding GDA, and the information about the gene-disease pair. CONCLUSIONS: TBGA is amongst the largest datasets for GDA extraction. We have evaluated state-of-the-art models for GDA extraction on TBGA, showing that it is a challenging and well-suited dataset for the task. We made the dataset publicly available to foster the development of state-of-the-art BioRE models for GDA extraction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-04646-6.