Cargando…
A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However,...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974095/ https://www.ncbi.nlm.nih.gov/pubmed/35361222 http://dx.doi.org/10.1186/s12915-022-01262-x |
_version_ | 1784680188540354560 |
---|---|
author | Kopasz, Anna Georgina Pusztai, Dávid Zsolt Karkas, Réka Hudoba, Liza Abdullah, Khaldoon Sadiq Ahmed Imre, Gergely Pankotai-Bodó, Gabriella Migh, Ede Nagy, Andrea Kriston, András Germán, Péter Drubi, Andrea Bakné Molnár, Anna Fekete, Ildikó Dani, Virág Éva Ocsovszki, Imre Puskás, László Géza Horváth, Péter Sükösd, Farkas Mátés, Lajos |
author_facet | Kopasz, Anna Georgina Pusztai, Dávid Zsolt Karkas, Réka Hudoba, Liza Abdullah, Khaldoon Sadiq Ahmed Imre, Gergely Pankotai-Bodó, Gabriella Migh, Ede Nagy, Andrea Kriston, András Germán, Péter Drubi, Andrea Bakné Molnár, Anna Fekete, Ildikó Dani, Virág Éva Ocsovszki, Imre Puskás, László Géza Horváth, Péter Sükösd, Farkas Mátés, Lajos |
author_sort | Kopasz, Anna Georgina |
collection | PubMed |
description | BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01262-x. |
format | Online Article Text |
id | pubmed-8974095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-89740952022-04-02 A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver Kopasz, Anna Georgina Pusztai, Dávid Zsolt Karkas, Réka Hudoba, Liza Abdullah, Khaldoon Sadiq Ahmed Imre, Gergely Pankotai-Bodó, Gabriella Migh, Ede Nagy, Andrea Kriston, András Germán, Péter Drubi, Andrea Bakné Molnár, Anna Fekete, Ildikó Dani, Virág Éva Ocsovszki, Imre Puskás, László Géza Horváth, Péter Sükösd, Farkas Mátés, Lajos BMC Biol Methodology Article BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01262-x. BioMed Central 2022-04-01 /pmc/articles/PMC8974095/ /pubmed/35361222 http://dx.doi.org/10.1186/s12915-022-01262-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Methodology Article Kopasz, Anna Georgina Pusztai, Dávid Zsolt Karkas, Réka Hudoba, Liza Abdullah, Khaldoon Sadiq Ahmed Imre, Gergely Pankotai-Bodó, Gabriella Migh, Ede Nagy, Andrea Kriston, András Germán, Péter Drubi, Andrea Bakné Molnár, Anna Fekete, Ildikó Dani, Virág Éva Ocsovszki, Imre Puskás, László Géza Horváth, Péter Sükösd, Farkas Mátés, Lajos A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title | A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title_full | A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title_fullStr | A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title_full_unstemmed | A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title_short | A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
title_sort | versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974095/ https://www.ncbi.nlm.nih.gov/pubmed/35361222 http://dx.doi.org/10.1186/s12915-022-01262-x |
work_keys_str_mv | AT kopaszannageorgina aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT pusztaidavidzsolt aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT karkasreka aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT hudobaliza aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT abdullahkhaldoonsadiqahmed aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT imregergely aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT pankotaibodogabriella aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT mighede aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT nagyandrea aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT kristonandras aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT germanpeter aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT drubiandreabakne aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT molnaranna aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT feketeildiko aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT danivirageva aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT ocsovszkiimre aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT puskaslaszlogeza aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT horvathpeter aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT sukosdfarkas aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT mateslajos aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT kopaszannageorgina versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT pusztaidavidzsolt versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT karkasreka versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT hudobaliza versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT abdullahkhaldoonsadiqahmed versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT imregergely versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT pankotaibodogabriella versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT mighede versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT nagyandrea versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT kristonandras versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT germanpeter versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT drubiandreabakne versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT molnaranna versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT feketeildiko versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT danivirageva versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT ocsovszkiimre versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT puskaslaszlogeza versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT horvathpeter versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT sukosdfarkas versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver AT mateslajos versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver |