Cargando…

A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver

BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kopasz, Anna Georgina, Pusztai, Dávid Zsolt, Karkas, Réka, Hudoba, Liza, Abdullah, Khaldoon Sadiq Ahmed, Imre, Gergely, Pankotai-Bodó, Gabriella, Migh, Ede, Nagy, Andrea, Kriston, András, Germán, Péter, Drubi, Andrea Bakné, Molnár, Anna, Fekete, Ildikó, Dani, Virág Éva, Ocsovszki, Imre, Puskás, László Géza, Horváth, Péter, Sükösd, Farkas, Mátés, Lajos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974095/
https://www.ncbi.nlm.nih.gov/pubmed/35361222
http://dx.doi.org/10.1186/s12915-022-01262-x
_version_ 1784680188540354560
author Kopasz, Anna Georgina
Pusztai, Dávid Zsolt
Karkas, Réka
Hudoba, Liza
Abdullah, Khaldoon Sadiq Ahmed
Imre, Gergely
Pankotai-Bodó, Gabriella
Migh, Ede
Nagy, Andrea
Kriston, András
Germán, Péter
Drubi, Andrea Bakné
Molnár, Anna
Fekete, Ildikó
Dani, Virág Éva
Ocsovszki, Imre
Puskás, László Géza
Horváth, Péter
Sükösd, Farkas
Mátés, Lajos
author_facet Kopasz, Anna Georgina
Pusztai, Dávid Zsolt
Karkas, Réka
Hudoba, Liza
Abdullah, Khaldoon Sadiq Ahmed
Imre, Gergely
Pankotai-Bodó, Gabriella
Migh, Ede
Nagy, Andrea
Kriston, András
Germán, Péter
Drubi, Andrea Bakné
Molnár, Anna
Fekete, Ildikó
Dani, Virág Éva
Ocsovszki, Imre
Puskás, László Géza
Horváth, Péter
Sükösd, Farkas
Mátés, Lajos
author_sort Kopasz, Anna Georgina
collection PubMed
description BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01262-x.
format Online
Article
Text
id pubmed-8974095
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-89740952022-04-02 A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver Kopasz, Anna Georgina Pusztai, Dávid Zsolt Karkas, Réka Hudoba, Liza Abdullah, Khaldoon Sadiq Ahmed Imre, Gergely Pankotai-Bodó, Gabriella Migh, Ede Nagy, Andrea Kriston, András Germán, Péter Drubi, Andrea Bakné Molnár, Anna Fekete, Ildikó Dani, Virág Éva Ocsovszki, Imre Puskás, László Géza Horváth, Péter Sükösd, Farkas Mátés, Lajos BMC Biol Methodology Article BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-022-01262-x. BioMed Central 2022-04-01 /pmc/articles/PMC8974095/ /pubmed/35361222 http://dx.doi.org/10.1186/s12915-022-01262-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Methodology Article
Kopasz, Anna Georgina
Pusztai, Dávid Zsolt
Karkas, Réka
Hudoba, Liza
Abdullah, Khaldoon Sadiq Ahmed
Imre, Gergely
Pankotai-Bodó, Gabriella
Migh, Ede
Nagy, Andrea
Kriston, András
Germán, Péter
Drubi, Andrea Bakné
Molnár, Anna
Fekete, Ildikó
Dani, Virág Éva
Ocsovszki, Imre
Puskás, László Géza
Horváth, Péter
Sükösd, Farkas
Mátés, Lajos
A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title_full A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title_fullStr A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title_full_unstemmed A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title_short A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
title_sort versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver
topic Methodology Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974095/
https://www.ncbi.nlm.nih.gov/pubmed/35361222
http://dx.doi.org/10.1186/s12915-022-01262-x
work_keys_str_mv AT kopaszannageorgina aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT pusztaidavidzsolt aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT karkasreka aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT hudobaliza aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT abdullahkhaldoonsadiqahmed aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT imregergely aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT pankotaibodogabriella aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT mighede aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT nagyandrea aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT kristonandras aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT germanpeter aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT drubiandreabakne aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT molnaranna aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT feketeildiko aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT danivirageva aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT ocsovszkiimre aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT puskaslaszlogeza aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT horvathpeter aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT sukosdfarkas aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT mateslajos aversatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT kopaszannageorgina versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT pusztaidavidzsolt versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT karkasreka versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT hudobaliza versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT abdullahkhaldoonsadiqahmed versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT imregergely versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT pankotaibodogabriella versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT mighede versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT nagyandrea versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT kristonandras versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT germanpeter versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT drubiandreabakne versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT molnaranna versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT feketeildiko versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT danivirageva versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT ocsovszkiimre versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT puskaslaszlogeza versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT horvathpeter versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT sukosdfarkas versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver
AT mateslajos versatiletransposonbasedtechnologytogeneratelossandgainoffunctionphenotypesinthemouseliver