Cargando…
CircRNA_0001795 sponges miRNA-339-5p to regulate yes-associated protein 1 expression and attenuate osteoporosis progression
Osteoporosis (OP) is one of the most common bone diseases, especially in women after menopause. Increasing evidence shows that non-coding RNAs are implicated in the pathogenesis of OP. In this study, based on the published circular RNA profiling data between OP patients and healthy controls, we foun...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974149/ https://www.ncbi.nlm.nih.gov/pubmed/35040370 http://dx.doi.org/10.1080/21655979.2021.2022074 |
Sumario: | Osteoporosis (OP) is one of the most common bone diseases, especially in women after menopause. Increasing evidence shows that non-coding RNAs are implicated in the pathogenesis of OP. In this study, based on the published circular RNA profiling data between OP patients and healthy controls, we found that circRNA_0001795 (circ_0001795) is downregulated in OP samples, which was further validated in the OP samples collected in this study. We therefore investigated the functional role and molecular mechanism of circ_0001795 in the osteogenic differentiation of human bone marrow stromal cells (hBMSCs) hBMSCs by alkaline phosphatase (ALP) activity assay, ALP and Alizarin Red S (ALS) Staining, luciferase reporter assay. Our data revealed that the overexpression of circ_0001795 could significantly promote the osteogenic differentiation of hBMSCs. MiRNA-339-5p (miR-339-5p) was identified as a target of circ_0001795, and miR-339-5p mimic attenuated the effect of circ_0001795 overexpression. MiR-339-5p downregulated yes-associated protein 1 (YAP1), which mediates the effect of circ_0001795 overexpression. Overall, this study uncovered the role of circ_0001795/miR-339-5p/YAP1 axis in regulating osteogenic differentiation, indicating that targeting Circ_0001795 could serve as a novel therapeutic target for OP. |
---|