Cargando…
In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells
Decellularized extracellular matrix (ECM) has frequently been applied as a biomaterial for tissue engineering purposes. When implanted, their role can be essential for partial trachea replacement in patients that require a viable transplant solution. Acellular canine tracheal scaffolds with preserve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974223/ https://www.ncbi.nlm.nih.gov/pubmed/35109755 http://dx.doi.org/10.1080/21655979.2021.2020392 |
_version_ | 1784680219726053376 |
---|---|
author | de Sá Schiavo Matias, Gustavo Carreira, Ana Claudia O. Batista, Vitória Frias de Carvalho, Hianka Jasmyne Costa Miglino, Maria Angelica Fratini, Paula |
author_facet | de Sá Schiavo Matias, Gustavo Carreira, Ana Claudia O. Batista, Vitória Frias de Carvalho, Hianka Jasmyne Costa Miglino, Maria Angelica Fratini, Paula |
author_sort | de Sá Schiavo Matias, Gustavo |
collection | PubMed |
description | Decellularized extracellular matrix (ECM) has frequently been applied as a biomaterial for tissue engineering purposes. When implanted, their role can be essential for partial trachea replacement in patients that require a viable transplant solution. Acellular canine tracheal scaffolds with preserved ECM structure, flexibility, and proteins were obtained by high pressure vacuum decellularization. Here, we aimed to evaluate the cell adhesion and proliferation of canine tracheal epithelial cells (EpC) and canine yolk sac endothelial progenitor cells (YS) cultivated on canine decellularized tracheal scaffolds and test the in vivo biocompatibility of these recellularized scaffolds implanted in BALB-c nude mice. In order to evaluate the recellularization efficiency, scaffolds were evaluated by scanning electron microscopy (SEM), immunofluorescence, DNA quantification, mycoplasma test, and in vivo biocompatibility. The scaffolds sterility was confirmed, and EpC and YS cells were cultured by 7 and 14 days. We demonstrated by SEM, immunofluorescence, and genomic DNA analyzes cell adhesion to tracheal ECM. Then, recellularized scaffolds were in vivo subcutaneously implanted in mice and after 45 days, the fragments were collected and analyzed by Hematoxylin-Eosin and Gömori Trichrome staining and PCNA, CD4, CD8, and CD68 immunohistochemistry. In vivo results confirmed that the implanted tissue remains preserved and proliferative, and no fibrotic tissue process was observed in animals. Finally, our results showed the recellularization success due the preserved ECM proteins, and that these may be suitable to future preclinical studies applications for partial trachea replacement in tissue engineering. |
format | Online Article Text |
id | pubmed-8974223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-89742232022-04-02 In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells de Sá Schiavo Matias, Gustavo Carreira, Ana Claudia O. Batista, Vitória Frias de Carvalho, Hianka Jasmyne Costa Miglino, Maria Angelica Fratini, Paula Bioengineered Research Paper Decellularized extracellular matrix (ECM) has frequently been applied as a biomaterial for tissue engineering purposes. When implanted, their role can be essential for partial trachea replacement in patients that require a viable transplant solution. Acellular canine tracheal scaffolds with preserved ECM structure, flexibility, and proteins were obtained by high pressure vacuum decellularization. Here, we aimed to evaluate the cell adhesion and proliferation of canine tracheal epithelial cells (EpC) and canine yolk sac endothelial progenitor cells (YS) cultivated on canine decellularized tracheal scaffolds and test the in vivo biocompatibility of these recellularized scaffolds implanted in BALB-c nude mice. In order to evaluate the recellularization efficiency, scaffolds were evaluated by scanning electron microscopy (SEM), immunofluorescence, DNA quantification, mycoplasma test, and in vivo biocompatibility. The scaffolds sterility was confirmed, and EpC and YS cells were cultured by 7 and 14 days. We demonstrated by SEM, immunofluorescence, and genomic DNA analyzes cell adhesion to tracheal ECM. Then, recellularized scaffolds were in vivo subcutaneously implanted in mice and after 45 days, the fragments were collected and analyzed by Hematoxylin-Eosin and Gömori Trichrome staining and PCNA, CD4, CD8, and CD68 immunohistochemistry. In vivo results confirmed that the implanted tissue remains preserved and proliferative, and no fibrotic tissue process was observed in animals. Finally, our results showed the recellularization success due the preserved ECM proteins, and that these may be suitable to future preclinical studies applications for partial trachea replacement in tissue engineering. Taylor & Francis 2022-02-02 /pmc/articles/PMC8974223/ /pubmed/35109755 http://dx.doi.org/10.1080/21655979.2021.2020392 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Paper de Sá Schiavo Matias, Gustavo Carreira, Ana Claudia O. Batista, Vitória Frias de Carvalho, Hianka Jasmyne Costa Miglino, Maria Angelica Fratini, Paula In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title | In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title_full | In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title_fullStr | In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title_full_unstemmed | In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title_short | In vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
title_sort | in vivo biocompatibility analysis of the recellularized canine tracheal scaffolds with canine epithelial and endothelial progenitor cells |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974223/ https://www.ncbi.nlm.nih.gov/pubmed/35109755 http://dx.doi.org/10.1080/21655979.2021.2020392 |
work_keys_str_mv | AT desaschiavomatiasgustavo invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells AT carreiraanaclaudiao invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells AT batistavitoriafrias invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells AT decarvalhohiankajasmynecosta invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells AT miglinomariaangelica invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells AT fratinipaula invivobiocompatibilityanalysisoftherecellularizedcaninetrachealscaffoldswithcanineepithelialandendothelialprogenitorcells |