Cargando…
Ensemble Prediction of Job Resources to Improve System Performance for Slurm-Based HPC Systems
In this paper, we present a novel methodology for predicting job resources (memory and time) for submitted jobs on HPC systems. Our methodology based on historical jobs data (saccount data) provided from the Slurm workload manager using supervised machine learning. This Machine Learning (ML) predict...
Autores principales: | Tanash, Mohammed, Andresen, Daniel, Yang, Huichen, Hsu, William |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974354/ https://www.ncbi.nlm.nih.gov/pubmed/35373221 http://dx.doi.org/10.1145/3437359.3465574 |
Ejemplares similares
-
slurmR: A lightweight wrapper for HPC with Slurm
por: Vega Yon, George G, et al.
Publicado: (2019) -
Migrating Engineering Windows HPC applications to Linux HTCondor and Slurm Clusters
por: Alandes Pradillo, Maria, et al.
Publicado: (2020) -
Predicting Job Power Consumption Based on RJMS Submission Data in HPC Systems
por: Saillant, Théo, et al.
Publicado: (2020) -
ATLAS job submission system for Salomon HPC based on ARC-CE
por: Svatos, Michal, et al.
Publicado: (2019) -
ATLAS job submission system for Salomon HPC based on ARC-CE
por: Svatos, Michal, et al.
Publicado: (2020)