Cargando…
SIEVE: identifying robust single cell variable genes for single-cell RNA sequencing data
Single-cell RNA-seq data analysis generally requires quality control, normalization, highly variable genes screening, dimensionality reduction and clustering. Among these processes, downstream analysis including dimensionality reduction and clustering are sensitive to the selection of highly variabl...
Autores principales: | Zhang, Yinan, Xie, Xiaowei, Wu, Peng, Zhu, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974938/ https://www.ncbi.nlm.nih.gov/pubmed/35402832 http://dx.doi.org/10.1097/BS9.0000000000000072 |
Ejemplares similares
-
SIEVE: joint inference of single-nucleotide variants and cell phylogeny from single-cell DNA sequencing data
por: Kang, Senbai, et al.
Publicado: (2022) -
Robustness of single-cell RNA-seq for identifying differentially expressed genes
por: Liu, Yong, et al.
Publicado: (2023) -
sccomp: Robust differential composition and variability analysis for single-cell data
por: Mangiola, Stefano, et al.
Publicado: (2023) -
A robust model for cell type-specific interindividual variation in single-cell RNA sequencing data
por: Chen, Minhui, et al.
Publicado: (2023) -
SCnorm: robust normalization of single-cell RNA-seq data
por: Bacher, Rhonda, et al.
Publicado: (2017)