Cargando…

An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records

Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Wesołowski, Sergiusz, Lemmon, Gordon, Hernandez, Edgar J., Henrie, Alex, Miller, Thomas A., Weyhrauch, Derek, Puchalski, Michael D., Bray, Bruce E., Shah, Rashmee U., Deshmukh, Vikrant G., Delaney, Rebecca, Yost, H. Joseph, Eilbeck, Karen, Tristani-Firouzi, Martin, Yandell, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975108/
https://www.ncbi.nlm.nih.gov/pubmed/35373216
http://dx.doi.org/10.1371/journal.pdig.0000004
_version_ 1784680334339604480
author Wesołowski, Sergiusz
Lemmon, Gordon
Hernandez, Edgar J.
Henrie, Alex
Miller, Thomas A.
Weyhrauch, Derek
Puchalski, Michael D.
Bray, Bruce E.
Shah, Rashmee U.
Deshmukh, Vikrant G.
Delaney, Rebecca
Yost, H. Joseph
Eilbeck, Karen
Tristani-Firouzi, Martin
Yandell, Mark
author_facet Wesołowski, Sergiusz
Lemmon, Gordon
Hernandez, Edgar J.
Henrie, Alex
Miller, Thomas A.
Weyhrauch, Derek
Puchalski, Michael D.
Bray, Bruce E.
Shah, Rashmee U.
Deshmukh, Vikrant G.
Delaney, Rebecca
Yost, H. Joseph
Eilbeck, Karen
Tristani-Firouzi, Martin
Yandell, Mark
author_sort Wesołowski, Sergiusz
collection PubMed
description Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses.
format Online
Article
Text
id pubmed-8975108
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-89751082022-04-01 An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records Wesołowski, Sergiusz Lemmon, Gordon Hernandez, Edgar J. Henrie, Alex Miller, Thomas A. Weyhrauch, Derek Puchalski, Michael D. Bray, Bruce E. Shah, Rashmee U. Deshmukh, Vikrant G. Delaney, Rebecca Yost, H. Joseph Eilbeck, Karen Tristani-Firouzi, Martin Yandell, Mark PLOS Digit Health Research Article Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses. Public Library of Science 2022-01-18 /pmc/articles/PMC8975108/ /pubmed/35373216 http://dx.doi.org/10.1371/journal.pdig.0000004 Text en © 2022 Wesołowski et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wesołowski, Sergiusz
Lemmon, Gordon
Hernandez, Edgar J.
Henrie, Alex
Miller, Thomas A.
Weyhrauch, Derek
Puchalski, Michael D.
Bray, Bruce E.
Shah, Rashmee U.
Deshmukh, Vikrant G.
Delaney, Rebecca
Yost, H. Joseph
Eilbeck, Karen
Tristani-Firouzi, Martin
Yandell, Mark
An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title_full An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title_fullStr An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title_full_unstemmed An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title_short An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
title_sort explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975108/
https://www.ncbi.nlm.nih.gov/pubmed/35373216
http://dx.doi.org/10.1371/journal.pdig.0000004
work_keys_str_mv AT wesołowskisergiusz anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT lemmongordon anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT hernandezedgarj anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT henriealex anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT millerthomasa anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT weyhrauchderek anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT puchalskimichaeld anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT braybrucee anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT shahrashmeeu anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT deshmukhvikrantg anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT delaneyrebecca anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT yosthjoseph anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT eilbeckkaren anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT tristanifirouzimartin anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT yandellmark anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT wesołowskisergiusz explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT lemmongordon explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT hernandezedgarj explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT henriealex explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT millerthomasa explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT weyhrauchderek explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT puchalskimichaeld explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT braybrucee explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT shahrashmeeu explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT deshmukhvikrantg explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT delaneyrebecca explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT yosthjoseph explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT eilbeckkaren explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT tristanifirouzimartin explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords
AT yandellmark explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords