Cargando…
An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analy...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975108/ https://www.ncbi.nlm.nih.gov/pubmed/35373216 http://dx.doi.org/10.1371/journal.pdig.0000004 |
_version_ | 1784680334339604480 |
---|---|
author | Wesołowski, Sergiusz Lemmon, Gordon Hernandez, Edgar J. Henrie, Alex Miller, Thomas A. Weyhrauch, Derek Puchalski, Michael D. Bray, Bruce E. Shah, Rashmee U. Deshmukh, Vikrant G. Delaney, Rebecca Yost, H. Joseph Eilbeck, Karen Tristani-Firouzi, Martin Yandell, Mark |
author_facet | Wesołowski, Sergiusz Lemmon, Gordon Hernandez, Edgar J. Henrie, Alex Miller, Thomas A. Weyhrauch, Derek Puchalski, Michael D. Bray, Bruce E. Shah, Rashmee U. Deshmukh, Vikrant G. Delaney, Rebecca Yost, H. Joseph Eilbeck, Karen Tristani-Firouzi, Martin Yandell, Mark |
author_sort | Wesołowski, Sergiusz |
collection | PubMed |
description | Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses. |
format | Online Article Text |
id | pubmed-8975108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-89751082022-04-01 An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records Wesołowski, Sergiusz Lemmon, Gordon Hernandez, Edgar J. Henrie, Alex Miller, Thomas A. Weyhrauch, Derek Puchalski, Michael D. Bray, Bruce E. Shah, Rashmee U. Deshmukh, Vikrant G. Delaney, Rebecca Yost, H. Joseph Eilbeck, Karen Tristani-Firouzi, Martin Yandell, Mark PLOS Digit Health Research Article Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records (EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77 million visits) for comorbid diagnoses, procedures, and medications. Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the intertwined, conditionally-dependent impacts of comorbid conditions and demography upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial node dysfunction and various forms of congenital heart disease. The resulting multimorbidity networks make possible wide-ranging explorations of the comorbid and demographic landscapes surrounding these cardiovascular outcomes, and can be distributed as web-based tools for further community-based outcomes research. The ability to transform enormous collections of EHRs into compact, portable tools devoid of Protected Health Information solves many of the legal, technological, and data-scientific challenges associated with large-scale EHR analyses. Public Library of Science 2022-01-18 /pmc/articles/PMC8975108/ /pubmed/35373216 http://dx.doi.org/10.1371/journal.pdig.0000004 Text en © 2022 Wesołowski et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wesołowski, Sergiusz Lemmon, Gordon Hernandez, Edgar J. Henrie, Alex Miller, Thomas A. Weyhrauch, Derek Puchalski, Michael D. Bray, Bruce E. Shah, Rashmee U. Deshmukh, Vikrant G. Delaney, Rebecca Yost, H. Joseph Eilbeck, Karen Tristani-Firouzi, Martin Yandell, Mark An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title | An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title_full | An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title_fullStr | An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title_full_unstemmed | An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title_short | An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
title_sort | explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975108/ https://www.ncbi.nlm.nih.gov/pubmed/35373216 http://dx.doi.org/10.1371/journal.pdig.0000004 |
work_keys_str_mv | AT wesołowskisergiusz anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT lemmongordon anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT hernandezedgarj anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT henriealex anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT millerthomasa anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT weyhrauchderek anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT puchalskimichaeld anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT braybrucee anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT shahrashmeeu anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT deshmukhvikrantg anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT delaneyrebecca anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT yosthjoseph anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT eilbeckkaren anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT tristanifirouzimartin anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT yandellmark anexplainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT wesołowskisergiusz explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT lemmongordon explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT hernandezedgarj explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT henriealex explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT millerthomasa explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT weyhrauchderek explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT puchalskimichaeld explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT braybrucee explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT shahrashmeeu explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT deshmukhvikrantg explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT delaneyrebecca explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT yosthjoseph explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT eilbeckkaren explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT tristanifirouzimartin explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords AT yandellmark explainableartificialintelligenceapproachforpredictingcardiovascularoutcomesusingelectronichealthrecords |