Cargando…
An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records
Understanding the conditionally-dependent clinical variables that drive cardiovascular health outcomes is a major challenge for precision medicine. Here, we deploy a recently developed massively scalable comorbidity discovery method called Poisson Binomial based Comorbidity discovery (PBC), to analy...
Autores principales: | Wesołowski, Sergiusz, Lemmon, Gordon, Hernandez, Edgar J., Henrie, Alex, Miller, Thomas A., Weyhrauch, Derek, Puchalski, Michael D., Bray, Bruce E., Shah, Rashmee U., Deshmukh, Vikrant G., Delaney, Rebecca, Yost, H. Joseph, Eilbeck, Karen, Tristani-Firouzi, Martin, Yandell, Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975108/ https://www.ncbi.nlm.nih.gov/pubmed/35373216 http://dx.doi.org/10.1371/journal.pdig.0000004 |
Ejemplares similares
-
De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes
por: Watkins, W. Scott, et al.
Publicado: (2019) -
To explain or not to explain?—Artificial intelligence explainability in clinical decision support systems
por: Amann, Julia, et al.
Publicado: (2022) -
Explainable artificial intelligence model to predict acute critical illness from electronic health records
por: Lauritsen, Simon Meyer, et al.
Publicado: (2020) -
Inhibition of Notch signaling rescues cardiovascular development in Kabuki Syndrome
por: Serrano, Maria de los Angeles, et al.
Publicado: (2019) -
Quantitative measures for the management and comparison of annotated genomes
por: Eilbeck, Karen, et al.
Publicado: (2009)