Cargando…
A Functional Model for Structure Learning and Parameter Estimation in Continuous Time Bayesian Network: An Application in Identifying Patterns of Multiple Chronic Conditions
Bayesian networks are powerful statistical models to study the probabilistic relationships among sets of random variables with significant applications in disease modeling and prediction. Here, we propose a continuous time Bayesian network with conditional dependencies represented as regularized Poi...
Autores principales: | FARUQUI, SYED HASIB AKHTER, ALAEDDINI, ADEL, WANG, JING, JARAMILLO, CARLOS A., PUGH, MARY JO |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975131/ https://www.ncbi.nlm.nih.gov/pubmed/35371895 http://dx.doi.org/10.1109/access.2021.3122912 |
Ejemplares similares
-
Mining patterns of comorbidity evolution in patients with multiple chronic conditions using unsupervised multi-level temporal Bayesian network
por: Faruqui, Syed Hasib Akhter, et al.
Publicado: (2018) -
Summarizing Complex Graphical Models of Multiple Chronic Conditions Using the Second Eigenvalue of Graph Laplacian: Algorithm Development and Validation
por: Faruqui, Syed Hasib Akhter, et al.
Publicado: (2020) -
Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial
por: Faruqui, Syed Hasib Akhter, et al.
Publicado: (2019) -
Bayesian inference: parameter estimation and decisions
por: Harney, Hanns L
Publicado: (2003) -
Bayesian spectrum analysis and parameter estimation
por: Bre3rdorst, G Larry
Publicado: (1988)