Cargando…

Prognosis Model of Advanced Non-Small-Cell Lung Cancer Based on Max-Min Hill-Climbing Algorithm

A safer and more effective treatment is need for the comprehensive treatment based on chemotherapy in patients with advanced non-small-cell lung cancer (NSCLC). The max-min hill-climbing (MMHC) is a common algorithm for disease prediction. This study is aimed at analyzing the efficacy of the MMHC al...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Weizheng, Kan, Qingsheng, Li, Bin, Zhang, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975666/
https://www.ncbi.nlm.nih.gov/pubmed/35371284
http://dx.doi.org/10.1155/2022/9173913
Descripción
Sumario:A safer and more effective treatment is need for the comprehensive treatment based on chemotherapy in patients with advanced non-small-cell lung cancer (NSCLC). The max-min hill-climbing (MMHC) is a common algorithm for disease prediction. This study is aimed at analyzing the efficacy of the MMHC algorithm in prognosis evaluation of advanced NSCLC. In this study, the prognosis model of lung cancer was first established by the MMHC algorithm. Then, according to the MMHC algorithm results, 40 patients with advanced NSCLC were divided into the research group and control group before anlotinib hydrochloride capsule combined with pemetrexed disodium chemotherapy. The diameter of solid tumor lesions, objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS) was compared between the two groups. The results showed that the MMHC model has a higher prediction accuracy of survival status of lung cancer patients. Under the guidance of the model, the research group has a smaller diameter of primary foci and metastatic foci, a higher ORR, DCR, and a longer PFS than the control group (P < 0.05). We can conclude that the MMHC algorithm can guide the maintenance treatment of advanced NSCLC, which is conducive to the prognosis judgment and treatment cost control.