Cargando…

Technology-based approaches toward a better understanding of neuro-coagulation in brain homeostasis

Blood coagulation factors can enter the brain under pathological conditions that affect the blood–brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiol...

Descripción completa

Detalles Bibliográficos
Autores principales: Maoz, Ben M., Asplund, Maria, Maggio, Nicola, Vlachos, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8975761/
https://www.ncbi.nlm.nih.gov/pubmed/34850274
http://dx.doi.org/10.1007/s00441-021-03560-2
Descripción
Sumario:Blood coagulation factors can enter the brain under pathological conditions that affect the blood–brain interface. Besides their contribution to pathological brain states, such as neural hyperexcitability, neurodegeneration, and scar formation, coagulation factors have been linked to several physiological brain functions. It is for example well established that the coagulation factor thrombin modulates synaptic plasticity; it affects neural excitability and induces epileptic seizures via activation of protease-activated receptors in the brain. However, major limitations of current experimental and clinical approaches have prevented us from obtaining a profound mechanistic understanding of “neuro-coagulation” in health and disease. Here, we present how novel human relevant models, i.e., Organ-on-Chips equipped with advanced sensors, can help overcoming some of the limitations in the field, thus providing a perspective toward a better understanding of neuro-coagulation in brain homeostasis.