Cargando…

Fusion of Majorana bound states with mini-gate control in two-dimensional systems

A hallmark of topological superconductivity is the non-Abelian statistics of Majorana bound states (MBS), its chargeless zero-energy emergent quasiparticles. The resulting fractionalization of a single electron, stored nonlocally as a two spatially-separated MBS, provides a powerful platform for imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Tong, Dartiailh, Matthieu C., Sardashti, Kasra, Han, Jong E., Matos-Abiague, Alex, Shabani, Javad, Žutić, Igor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976011/
https://www.ncbi.nlm.nih.gov/pubmed/35365644
http://dx.doi.org/10.1038/s41467-022-29463-6
Descripción
Sumario:A hallmark of topological superconductivity is the non-Abelian statistics of Majorana bound states (MBS), its chargeless zero-energy emergent quasiparticles. The resulting fractionalization of a single electron, stored nonlocally as a two spatially-separated MBS, provides a powerful platform for implementing fault-tolerant topological quantum computing. However, despite intensive efforts, experimental support for MBS remains indirect and does not probe their non-Abelian statistics. Here we propose how to overcome this obstacle in mini-gate controlled planar Josephson junctions (JJs) and demonstrate non-Abelian statistics through MBS fusion, detected by charge sensing using a quantum point contact, based on dynamical simulations. The feasibility of preparing, manipulating, and fusing MBS in two-dimensional (2D) systems is supported in our experiments which demonstrate the gate control of topological transition and superconducting properties with five mini gates in InAs/Al-based JJs. While we focus on this well-established platform, where the topological superconductivity was already experimentally detected, our proposal to identify elusive non-Abelian statistics motivates also further MBS studies in other gate-controlled 2D systems.