Cargando…
XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set
Accurate identification of drug-targets in human body has great significance for designing novel drugs. Compared with traditional experimental methods, prediction of drug-targets via machine learning algorithms has enhanced the attention of many researchers due to fast and accurate prediction. In th...
Autores principales: | Sikander, Rahu, Ghulam, Ali, Ali, Farman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976041/ https://www.ncbi.nlm.nih.gov/pubmed/35365726 http://dx.doi.org/10.1038/s41598-022-09484-3 |
Ejemplares similares
-
T4SE-XGB: Interpretable Sequence-Based Prediction of Type IV Secreted Effectors Using eXtreme Gradient Boosting Algorithm
por: Chen, Tianhang, et al.
Publicado: (2020) -
Prediction of fall events during admission using eXtreme gradient boosting: a comparative validation study
por: Hsu, Yin-Chen, et al.
Publicado: (2020) -
A clinical diagnostic model based on an eXtreme Gradient Boosting algorithm to distinguish type 1 diabetes
por: Tang, Xiaohan, et al.
Publicado: (2021) -
Outcome prediction for acute kidney injury among hospitalized children via eXtreme Gradient Boosting algorithm
por: Deng, Ying-Hao, et al.
Publicado: (2022) -
A data-driven eXtreme gradient boosting machine learning model to predict COVID-19 transmission with meteorological drivers
por: Rahman, Md. Siddikur, et al.
Publicado: (2022)