Cargando…
Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
Recent advances in spatially resolved transcriptomics have enabled comprehensive measurements of gene expression patterns while retaining the spatial context of the tissue microenvironment. Deciphering the spatial context of spots in a tissue needs to use their spatial information carefully. To this...
Autores principales: | Dong, Kangning, Zhang, Shihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976049/ https://www.ncbi.nlm.nih.gov/pubmed/35365632 http://dx.doi.org/10.1038/s41467-022-29439-6 |
Ejemplares similares
-
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023) -
Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion
por: Li, Zhuliu, et al.
Publicado: (2021) -
Revealing Tissue Heterogeneity and Spatial Dark Genes from Spatially Resolved Transcriptomics by Multiview Graph Networks
por: Li, Ying, et al.
Publicado: (2023) -
spaCI: deciphering spatial cellular communications through adaptive graph model
por: Tang, Ziyang, et al.
Publicado: (2022) -
STAMarker: determining spatial domain-specific variable genes with saliency maps in deep learning
por: Zhang, Chihao, et al.
Publicado: (2023)