Cargando…

Electricity systems in the limit of free solar photovoltaics and continent-scale transmission

Solar photovoltaics, with sufficient power generation potential, low-carbon footprint, and rapidly declining costs, could supplant fossil fuels and help produce lower-cost net-zero emissions energy systems. Here we used an idealized linear optimization model, including free lossless transmission, to...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Lei, Ruggles, Tyler H., Caldeira, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976139/
https://www.ncbi.nlm.nih.gov/pubmed/35378859
http://dx.doi.org/10.1016/j.isci.2022.104108
Descripción
Sumario:Solar photovoltaics, with sufficient power generation potential, low-carbon footprint, and rapidly declining costs, could supplant fossil fuels and help produce lower-cost net-zero emissions energy systems. Here we used an idealized linear optimization model, including free lossless transmission, to study the response of electricity systems to increasing prescribed amounts of solar power. Our results show that there are initially great benefits when providing solar power to the system, especially under deep decarbonization scenarios. The marginal value of additional solar power decreases substantially with increasing cumulative solar capacities. At costs near today’s levels, the modeled zero-emission electricity system with free solar generation equaling twice the annual mean demand is more costly than a carbon-emitting natural-gas-based system supplying the same electricity demand with no solar. Taking full advantage of low-cost solar will depend on developing and deploying low-cost approaches to temporally shift either energy supply (e.g., storage) or electricity loads (e.g., load-shifting).