Cargando…

Biogeography, succession, and origin of the chicken intestinal mycobiome

BACKGROUND: Extensive work has been accomplished to characterize the intestinal bacterial community, known as the microbiota, and its association with host health and disease. However, very little is known about the spatiotemporal development and the origin of a minor intestinal fungal community, kn...

Descripción completa

Detalles Bibliográficos
Autores principales: Robinson, Kelsy, Yang, Qing, Stewart, Sydney, Whitmore, Melanie A., Zhang, Guolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976367/
https://www.ncbi.nlm.nih.gov/pubmed/35365230
http://dx.doi.org/10.1186/s40168-022-01252-9
Descripción
Sumario:BACKGROUND: Extensive work has been accomplished to characterize the intestinal bacterial community, known as the microbiota, and its association with host health and disease. However, very little is known about the spatiotemporal development and the origin of a minor intestinal fungal community, known as the mycobiota, in humans and animals, particularly in avian species. RESULTS: In this study, we comprehensively characterized the biogeography and succession of the gastrointestinal (GI) mycobiota of broiler chickens and further revealed the fungal sources that are responsible for initial and long-term establishment of the mycobiota in the GI tract. Using Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes, we detected significant spatial and temporal differences in the mycobiota along the GI tract. In contrary to the microbiota, the mycobiota was more diverse in the upper than the lower GI tract with no apparent trend of succession up to 42 days of age. The intestinal mycobiota was dominated by the phyla Ascomycota and Basidiomycota with Gibberella, Aspergillus, and Candida being the most abundant genera. Although the chicken mycobiota was highly dynamic, Fusarium pseudonygamai was dominant throughout the GI tract regardless of age in this study. The core chicken mycobiome consisted of 26 fungal taxa accounting for greater than 85% of the fungal population in each GI location. However, we observed high variations of the intestinal mycobiota among different studies. We also showed that the total fungal population varied greatly from 1.0 × 10(4) to 1.1 × 10(6) /g digesta along the GI tract and only accounted for less than 0.06% of the bacteria in day-42 broilers. Finally, we revealed that the mycobiota from the hatchery environment was responsible for initial colonization in the GI tract of newly hatched chickens, but was quickly replaced by the fungi in the diet within 3 days. CONCLUSIONS: Relative to the intestinal microbiota that consists of trillions of bacteria in hundreds of different species and becomes relatively stabilized as animals age, the chicken intestinal mycobiota is a minor microbial community that is temporally dynamic with limited diversity and no obvious pattern of successive changes. However, similar to the microbiota, the chicken mycobiota is spatially different along the GI tract, although it is more diverse in the upper than the lower GI tract. Dietary fungi are the major source of the intestinal mycobiota in growing chickens. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01252-9.