Cargando…

Zika virus infection accelerates Alzheimer’s disease phenotypes in brain organoids

Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood beca...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seung-Eun, Choi, Hanul, Shin, Nari, Kong, Dasom, Kim, Nam Gyo, Kim, Hee-Yeong, Kim, Min-Ji, Choi, Soon Won, Kim, Young Bong, Kang, Kyung-Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976422/
https://www.ncbi.nlm.nih.gov/pubmed/35368019
http://dx.doi.org/10.1038/s41420-022-00958-x
Descripción
Sumario:Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood because there are multiple risk factors associated with the disease. Viral infection is one of the risk factors for AD, and we demonstrated that Zika virus (ZIKV) infection in brain organoids could trigger AD pathological features, including Aβ and p-Tau expression. AD-related phenotypes in brain organoids were upregulated via endoplasmic reticulum (ER) stress and unfolded protein response (UPR) after ZIKV infection in brain organoids. Under persistent ER stress, activated-double stranded RNA-dependent protein kinase-like ER-resident (PERK) triggered the phosphorylation of Eukaryotic initiation factor 2 (eIF2α) and then BACE, and GSK3α/β related to AD. Furthermore, we demonstrated that pharmacological inhibitors of PERK attenuated Aβ and p-Tau in brain organoids after ZIKV infection.