Cargando…
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
BACKGROUND: Patients suffered aneurysmal subarachnoid hemorrhage (aSAH) usually develop poor survival and functional outcome. Evaluating aSAH patients at high risk of poor outcome is necessary for clinicians to make suitable therapeutical strategy. This study is conducted to develop prognostic model...
Autores principales: | Wang, Ruoran, Zhang, Jing, Shan, Baoyin, He, Min, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976557/ https://www.ncbi.nlm.nih.gov/pubmed/35378822 http://dx.doi.org/10.2147/NDT.S349956 |
Ejemplares similares
-
A Machine Learning Approach Using XGBoost Predicts Lung Metastasis in Patients with Ovarian Cancer
por: Yuan, Yufei, et al.
Publicado: (2022) -
Predicting the Outcome of Patients with Aneurysmal Subarachnoid Hemorrhage: A Machine-Learning-Guided Scorecard
por: Zhang, Yi, et al.
Publicado: (2023) -
Prediction of Acute Respiratory Distress Syndrome in Traumatic Brain Injury Patients Based on Machine Learning Algorithms
por: Wang, Ruoran, et al.
Publicado: (2023) -
Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms
por: Wang, Ruoran, et al.
Publicado: (2023) -
Outcome prediction in aneurysmal subarachnoid hemorrhage: a comparison of machine learning methods and established clinico-radiological scores
por: Dengler, Nora Franziska, et al.
Publicado: (2021)