Cargando…
Differentially Private Singular Value Decomposition for Training Support Vector Machines
Support vector machine (SVM) is an efficient classification method in machine learning. The traditional classification model of SVMs may pose a great threat to personal privacy, when sensitive information is included in the training datasets. Principal component analysis (PCA) can project instances...
Autores principales: | Sun, Zhenlong, Yang, Jing, Li, Xiaoye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976603/ https://www.ncbi.nlm.nih.gov/pubmed/35378802 http://dx.doi.org/10.1155/2022/2935975 |
Ejemplares similares
-
Retracted: Differentially Private Singular Value Decomposition for Training Support Vector Machines
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
DPWSS: differentially private working set selection for training support vector machines
por: Sun, Zhenlong, et al.
Publicado: (2021) -
Unfolding with Singular Value Decomposition
por: Kartvelishvili, V
Publicado: (2011) -
Singular value decomposition-based gait characterization
por: Guzelbulut, Cem, et al.
Publicado: (2022) -
Singular value decompositions in focal plane tomography
por: Townsend, David W, et al.
Publicado: (1978)