Cargando…
China's Economic Forecast Based on Machine Learning and Quantitative Easing
In this paper, six variables, including export value, real exchange rate, Chinese GDP, and US IPI, and their seasonal variables, are used as determinants to model and forecast China's export value to the US using three methods: BP neural network, ARIMA, and AR-GARCH. Error indicators were chose...
Autor principal: | Qiu, Chang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976612/ https://www.ncbi.nlm.nih.gov/pubmed/35378809 http://dx.doi.org/10.1155/2022/2404174 |
Ejemplares similares
-
A quantitative easing experiment()
por: Penalver, Adrian, et al.
Publicado: (2020) -
Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting
por: Barbaglia, Luca, et al.
Publicado: (2021) -
Quantitative Easing and bank risk-taking behavior
por: Dhital, Saroj, et al.
Publicado: (2023) -
Corporate bond market reactions to quantitative easing during the COVID-19 pandemic()
por: Nozawa, Yoshio, et al.
Publicado: (2021) -
Forecasting Hospital Readmissions with Machine Learning
por: Michailidis, Panagiotis, et al.
Publicado: (2022)