Cargando…
Curcumin protects human umbilical vein endothelial cells against high oxidized low density lipoprotein-induced lipotoxicity and modulates autophagy
OBJECTIVE(S): Endothelial dysfunction is a precursor of cardiovascular disease, and protecting endothelial cells from damage is a treatment strategy for atherosclerosis (AS). Curcumin, a natural polyphenolic compound, has been shown to protect endothelial cells from dysfunction. In the present study...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976913/ https://www.ncbi.nlm.nih.gov/pubmed/35432800 http://dx.doi.org/10.22038/IJBMS.2021.59969.13297 |
Sumario: | OBJECTIVE(S): Endothelial dysfunction is a precursor of cardiovascular disease, and protecting endothelial cells from damage is a treatment strategy for atherosclerosis (AS). Curcumin, a natural polyphenolic compound, has been shown to protect endothelial cells from dysfunction. In the present study, we investigated whether curcumin could ameliorate high oxidized low-density lipoprotein (ox-LDL)-induced endothelial lipotoxicity by inducing autophagy in human umbilical vein endothelial cells (HUVECs). MATERIALS AND METHODS: HUVECs were treated with 50 μM high ox-LDL alone or in combination with 5 μM curcumin for 24 hr. Cell viability and function were assessed by the cell counting kit-8 (CCK-8) assay, tube formation assay and cell migration experiments. Oil red O staining was used to detect lipid droplet accumulation in HUVECs. The change in reactive oxygen species (ROS) levels in HUVECs was measured with the probe DCFH-DA. Quantitative real-time PCR (qPCR) and Western blotting were used to evaluate the mRNA and protein levels of several inflammatory and autophagy-related factors. RESULTS: Cell viability was restored, tube formation and migration ability were increased, and lipid accumulation, oxidative stress and inflammatory responses were decreased in the curcumin-treated group compared with the high ox-LDL group. Furthermore, high ox-LDL inhibited HUVEC autophagy, and this effect was reversed by curcumin. Moreover, curcumin regulated the expression of several key proteins involved in the AMPK/mTOR/p70S6K signaling pathway. CONCLUSION: Our findings suggest that curcumin is able to reduce endothelial lipotoxicity and modulate autophagy and that the AMPK/mTOR/p70S6K pathway might play a key role in these effects. |
---|