Cargando…
Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology
Automatic prostate tumor segmentation is often unable to identify the lesion even if multi-parametric MRI data is used as input, and the segmentation output is difficult to verify due to the lack of clinically established ground truth images. In this work we use an explainable deep learning model to...
Autores principales: | Gunashekar, Deepa Darshini, Bielak, Lars, Hägele, Leonard, Oerther, Benedict, Benndorf, Matthias, Grosu, Anca-L., Brox, Thomas, Zamboglou, Constantinos, Bock, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976981/ https://www.ncbi.nlm.nih.gov/pubmed/35366918 http://dx.doi.org/10.1186/s13014-022-02035-0 |
Ejemplares similares
-
Isotropic Expansion of the Intraprostatic Gross Tumor Volume of Primary Prostate Cancer Patients Defined in MRI—A Correlation Study With Whole Mount Histopathological Information as Reference
por: Kramer, Maria, et al.
Publicado: (2020) -
Convolutional neural networks for head and neck tumor segmentation on 7-channel multiparametric MRI: a leave-one-out analysis
por: Bielak, Lars, et al.
Publicado: (2020) -
Prostate cancer tumour control probability modelling for external beam radiotherapy based on multi-parametric MRI-GTV definition
por: Sachpazidis, Ilias, et al.
Publicado: (2020) -
Immunohistochemistry and Radiomic Features for Survival Prediction in Small Cell Lung Cancer
por: Gkika, Eleni, et al.
Publicado: (2020) -
Comparison of PET/CT and whole-mount histopathology sections of the human prostate: a new strategy for voxel-wise evaluation
por: Schiller, F., et al.
Publicado: (2017)