Cargando…
Privacy-preserving logistic regression with secret sharing
BACKGROUND: Logistic regression (LR) is a widely used classification method for modeling binary outcomes in many medical data classification tasks. Researchers that collect and combine datasets from various data custodians and jurisdictions can greatly benefit from the increased statistical power to...
Autores principales: | Ghavamipour, Ali Reza, Turkmen, Fatih, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977014/ https://www.ncbi.nlm.nih.gov/pubmed/35366870 http://dx.doi.org/10.1186/s12911-022-01811-y |
Ejemplares similares
-
Privacy-preserving logistic regression training
por: Bonte, Charlotte, et al.
Publicado: (2018) -
High performance logistic regression for privacy-preserving genome analysis
por: De Cock, Martine, et al.
Publicado: (2021) -
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020) -
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
por: Li, Haoran, et al.
Publicado: (2014)