Cargando…
Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking
METHODS: The chemical ingredients of ANW were retrieved from TCMSP, TCMID, and literature. We predicted the potential targets of active ingredients by PubChem, Swiss Target Prediction, and STITCH databases. The targets related to ischemic stroke were retrieved using GeneCards, DisGeNET, DrugBank, TT...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977296/ https://www.ncbi.nlm.nih.gov/pubmed/35388303 http://dx.doi.org/10.1155/2022/2443615 |
_version_ | 1784680731869446144 |
---|---|
author | Zhang, Yasu Liu, Xiaomin Long, Junzi Cheng, Xue Wang, Xinyu Feng, Xiaodong |
author_facet | Zhang, Yasu Liu, Xiaomin Long, Junzi Cheng, Xue Wang, Xinyu Feng, Xiaodong |
author_sort | Zhang, Yasu |
collection | PubMed |
description | METHODS: The chemical ingredients of ANW were retrieved from TCMSP, TCMID, and literature. We predicted the potential targets of active ingredients by PubChem, Swiss Target Prediction, and STITCH databases. The targets related to ischemic stroke were retrieved using GeneCards, DisGeNET, DrugBank, TTD, and GEO databases. Subsequently, Venn diagrams were used to identify common targets of active ingredients and ischemic stroke. Protein-protein interaction (PPI) network was structured with STRING platform and Cytoscape 3.8.2. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of key targets were performed in the Metascape database. Finally, molecular docking was conducted by AutoDock Tools and PyMOL software. RESULTS: A total of 2391 targets were identified for 230 active ingredients of ANW, and 1386 of them overlapped with ischemic stroke targets. The key active ingredients were mainly quercetin, β-estradiol, berberine, wogonin, and β-sitosterol, and the key targets were also identified, including IL-6, AKT1, MAPK3, PIK3CA, and TNF. The biological process (BP) results indicated that ANW may have therapeutic effects through response oxidative stress, inflammatory response, cellular response to lipid, and response to nutrient levels. Furthermore, the ingredients of ANW were predicted to have therapeutic effects on ischemic stroke via the HIF-1 signaling pathway, FoxO signaling pathway, chemokine signaling pathway, fluid shear stress and atherosclerosis, and neurotrophin signaling pathway. The molecular docking results all showed that the core ingredients were strong binding activity with the core targets. CONCLUSION: In conclusion, the bioinformatics and pharmacological results reveal that counteracting oxidative stress, suppressing inflammation, inhibiting the development of AS, and even protecting neurological function are critical pathways for ANW in the treatment of ischemic stroke. These results may help to elucidate the mechanism of ANW on ischemic stroke for experimental studies and clinical applications. |
format | Online Article Text |
id | pubmed-8977296 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-89772962022-04-05 Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking Zhang, Yasu Liu, Xiaomin Long, Junzi Cheng, Xue Wang, Xinyu Feng, Xiaodong Evid Based Complement Alternat Med Research Article METHODS: The chemical ingredients of ANW were retrieved from TCMSP, TCMID, and literature. We predicted the potential targets of active ingredients by PubChem, Swiss Target Prediction, and STITCH databases. The targets related to ischemic stroke were retrieved using GeneCards, DisGeNET, DrugBank, TTD, and GEO databases. Subsequently, Venn diagrams were used to identify common targets of active ingredients and ischemic stroke. Protein-protein interaction (PPI) network was structured with STRING platform and Cytoscape 3.8.2. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of key targets were performed in the Metascape database. Finally, molecular docking was conducted by AutoDock Tools and PyMOL software. RESULTS: A total of 2391 targets were identified for 230 active ingredients of ANW, and 1386 of them overlapped with ischemic stroke targets. The key active ingredients were mainly quercetin, β-estradiol, berberine, wogonin, and β-sitosterol, and the key targets were also identified, including IL-6, AKT1, MAPK3, PIK3CA, and TNF. The biological process (BP) results indicated that ANW may have therapeutic effects through response oxidative stress, inflammatory response, cellular response to lipid, and response to nutrient levels. Furthermore, the ingredients of ANW were predicted to have therapeutic effects on ischemic stroke via the HIF-1 signaling pathway, FoxO signaling pathway, chemokine signaling pathway, fluid shear stress and atherosclerosis, and neurotrophin signaling pathway. The molecular docking results all showed that the core ingredients were strong binding activity with the core targets. CONCLUSION: In conclusion, the bioinformatics and pharmacological results reveal that counteracting oxidative stress, suppressing inflammation, inhibiting the development of AS, and even protecting neurological function are critical pathways for ANW in the treatment of ischemic stroke. These results may help to elucidate the mechanism of ANW on ischemic stroke for experimental studies and clinical applications. Hindawi 2022-03-27 /pmc/articles/PMC8977296/ /pubmed/35388303 http://dx.doi.org/10.1155/2022/2443615 Text en Copyright © 2022 Yasu Zhang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhang, Yasu Liu, Xiaomin Long, Junzi Cheng, Xue Wang, Xinyu Feng, Xiaodong Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title | Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title_full | Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title_fullStr | Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title_full_unstemmed | Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title_short | Exploring Active Compounds and Mechanisms of Angong Niuhuang Wan on Ischemic Stroke Based on Network Pharmacology and Molecular Docking |
title_sort | exploring active compounds and mechanisms of angong niuhuang wan on ischemic stroke based on network pharmacology and molecular docking |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977296/ https://www.ncbi.nlm.nih.gov/pubmed/35388303 http://dx.doi.org/10.1155/2022/2443615 |
work_keys_str_mv | AT zhangyasu exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking AT liuxiaomin exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking AT longjunzi exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking AT chengxue exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking AT wangxinyu exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking AT fengxiaodong exploringactivecompoundsandmechanismsofangongniuhuangwanonischemicstrokebasedonnetworkpharmacologyandmoleculardocking |