Cargando…
An Interpretable Chest CT Deep Learning Algorithm for Quantification of COVID-19 Lung Disease and Prediction of Inpatient Morbidity and Mortality
RATIONALE AND OBJECTIVES: The burden of coronavirus disease 2019 (COVID-19) airspace opacities is time consuming and challenging to quantify on computed tomography. The purpose of this study was to evaluate the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes assoc...
Autores principales: | Chamberlin, Jordan H., Aquino, Gilberto, Schoepf, Uwe Joseph, Nance, Sophia, Godoy, Franco, Carson, Landin, Giovagnoli, Vincent M., Gill, Callum E., McGill, Liam J., O'Doherty, Jim, Emrich, Tilman, Burt, Jeremy R., Baruah, Dhiraj, Varga-Szemes, Akos, Kabakus, Ismail M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association of University Radiologists. Published by Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977389/ https://www.ncbi.nlm.nih.gov/pubmed/35610114 http://dx.doi.org/10.1016/j.acra.2022.03.023 |
Ejemplares similares
-
Photon-counting detector CT-based virtual monoenergetic reconstructions: repeatability and reproducibility of radiomics features of an organic phantom and human myocardium
por: Wolf, Elias V., et al.
Publicado: (2023) -
Intra-individual comparison of coronary calcium scoring between photon counting detector- and energy integrating detector-CT: Effects on risk reclassification
por: Wolf, Elias V., et al.
Publicado: (2023) -
Radiation Dose Reduction for Coronary Artery Calcium Scoring Using a Virtual Noniodine Algorithm on Photon-Counting Detector Computed-Tomography Phantom Data
por: Fink, Nicola, et al.
Publicado: (2023) -
Tumor burden of lung metastases at initial staging in breast cancer patients detected by artificial intelligence as a prognostic tool for precision medicine
por: Kocher, Madison R., et al.
Publicado: (2022) -
Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning
por: Chamberlin, Jordan H., et al.
Publicado: (2022)