Cargando…
Biologically Plausible Training Mechanisms for Self-Supervised Learning in Deep Networks
We develop biologically plausible training mechanisms for self-supervised learning (SSL) in deep networks. Specifically, by biologically plausible training we mean (i) all updates of weights are based on current activities of pre-synaptic units and current, or activity retrieved from short term memo...
Autores principales: | Tang, Mufeng, Yang, Yibo, Amit, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8977509/ https://www.ncbi.nlm.nih.gov/pubmed/35386856 http://dx.doi.org/10.3389/fncom.2022.789253 |
Ejemplares similares
-
Biologically plausible local synaptic learning rules robustly implement deep supervised learning
por: Konishi, Masataka, et al.
Publicado: (2023) -
A biologically plausible learning rule for the Infomax on recurrent neural networks
por: Hayakawa, Takashi, et al.
Publicado: (2014) -
MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022) -
Biologically Plausible Class Discrimination Based Recurrent Neural Network Training for Motor Pattern Generation
por: Wijesinghe, Parami, et al.
Publicado: (2020) -
Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks
por: Shen, Guobin, et al.
Publicado: (2022)