_version_ 1784680887222272000
author Le Gall, Laura
Duddy, William J.
Martinat, Cecile
Mariot, Virginie
Connolly, Owen
Milla, Vanessa
Anakor, Ekene
Ouandaogo, Zamalou G.
Millecamps, Stephanie
Lainé, Jeanne
Vijayakumar, Udaya Geetha
Knoblach, Susan
Raoul, Cedric
Lucas, Olivier
Loeffler, Jean Philippe
Bede, Peter
Behin, Anthony
Blasco, Helene
Bruneteau, Gaelle
Del Mar Amador, Maria
Devos, David
Henriques, Alexandre
Hesters, Adele
Lacomblez, Lucette
Laforet, Pascal
Langlet, Timothee
Leblanc, Pascal
Le Forestier, Nadine
Maisonobe, Thierry
Meininger, Vincent
Robelin, Laura
Salachas, Francois
Stojkovic, Tanya
Querin, Giorgia
Dumonceaux, Julie
Butler Browne, Gillian
González De Aguilar, Jose‐Luis
Duguez, Stephanie
Pradat, Pierre Francois
author_facet Le Gall, Laura
Duddy, William J.
Martinat, Cecile
Mariot, Virginie
Connolly, Owen
Milla, Vanessa
Anakor, Ekene
Ouandaogo, Zamalou G.
Millecamps, Stephanie
Lainé, Jeanne
Vijayakumar, Udaya Geetha
Knoblach, Susan
Raoul, Cedric
Lucas, Olivier
Loeffler, Jean Philippe
Bede, Peter
Behin, Anthony
Blasco, Helene
Bruneteau, Gaelle
Del Mar Amador, Maria
Devos, David
Henriques, Alexandre
Hesters, Adele
Lacomblez, Lucette
Laforet, Pascal
Langlet, Timothee
Leblanc, Pascal
Le Forestier, Nadine
Maisonobe, Thierry
Meininger, Vincent
Robelin, Laura
Salachas, Francois
Stojkovic, Tanya
Querin, Giorgia
Dumonceaux, Julie
Butler Browne, Gillian
González De Aguilar, Jose‐Luis
Duguez, Stephanie
Pradat, Pierre Francois
author_sort Le Gall, Laura
collection PubMed
description BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle‐secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS‐R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged‐matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT‐qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human‐derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy‐derived denervation‐naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome‐like vesicles and disruption of RNA‐processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA‐processing proteins. The RNA‐processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti‐CD63 immuno‐blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle‐mediated toxicity in ALS.
format Online
Article
Text
id pubmed-8978001
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-89780012022-04-05 Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles Le Gall, Laura Duddy, William J. Martinat, Cecile Mariot, Virginie Connolly, Owen Milla, Vanessa Anakor, Ekene Ouandaogo, Zamalou G. Millecamps, Stephanie Lainé, Jeanne Vijayakumar, Udaya Geetha Knoblach, Susan Raoul, Cedric Lucas, Olivier Loeffler, Jean Philippe Bede, Peter Behin, Anthony Blasco, Helene Bruneteau, Gaelle Del Mar Amador, Maria Devos, David Henriques, Alexandre Hesters, Adele Lacomblez, Lucette Laforet, Pascal Langlet, Timothee Leblanc, Pascal Le Forestier, Nadine Maisonobe, Thierry Meininger, Vincent Robelin, Laura Salachas, Francois Stojkovic, Tanya Querin, Giorgia Dumonceaux, Julie Butler Browne, Gillian González De Aguilar, Jose‐Luis Duguez, Stephanie Pradat, Pierre Francois J Cachexia Sarcopenia Muscle Original Articles BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle‐secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS‐R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged‐matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT‐qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human‐derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy‐derived denervation‐naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome‐like vesicles and disruption of RNA‐processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA‐processing proteins. The RNA‐processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti‐CD63 immuno‐blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle‐mediated toxicity in ALS. John Wiley and Sons Inc. 2022-02-22 2022-04 /pmc/articles/PMC8978001/ /pubmed/35194965 http://dx.doi.org/10.1002/jcsm.12945 Text en © 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Le Gall, Laura
Duddy, William J.
Martinat, Cecile
Mariot, Virginie
Connolly, Owen
Milla, Vanessa
Anakor, Ekene
Ouandaogo, Zamalou G.
Millecamps, Stephanie
Lainé, Jeanne
Vijayakumar, Udaya Geetha
Knoblach, Susan
Raoul, Cedric
Lucas, Olivier
Loeffler, Jean Philippe
Bede, Peter
Behin, Anthony
Blasco, Helene
Bruneteau, Gaelle
Del Mar Amador, Maria
Devos, David
Henriques, Alexandre
Hesters, Adele
Lacomblez, Lucette
Laforet, Pascal
Langlet, Timothee
Leblanc, Pascal
Le Forestier, Nadine
Maisonobe, Thierry
Meininger, Vincent
Robelin, Laura
Salachas, Francois
Stojkovic, Tanya
Querin, Giorgia
Dumonceaux, Julie
Butler Browne, Gillian
González De Aguilar, Jose‐Luis
Duguez, Stephanie
Pradat, Pierre Francois
Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title_full Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title_fullStr Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title_full_unstemmed Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title_short Muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
title_sort muscle cells of sporadic amyotrophic lateral sclerosis patients secrete neurotoxic vesicles
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978001/
https://www.ncbi.nlm.nih.gov/pubmed/35194965
http://dx.doi.org/10.1002/jcsm.12945
work_keys_str_mv AT legalllaura musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT duddywilliamj musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT martinatcecile musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT mariotvirginie musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT connollyowen musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT millavanessa musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT anakorekene musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT ouandaogozamaloug musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT millecampsstephanie musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT lainejeanne musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT vijayakumarudayageetha musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT knoblachsusan musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT raoulcedric musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT lucasolivier musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT loefflerjeanphilippe musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT bedepeter musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT behinanthony musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT blascohelene musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT bruneteaugaelle musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT delmaramadormaria musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT devosdavid musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT henriquesalexandre musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT hestersadele musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT lacomblezlucette musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT laforetpascal musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT langlettimothee musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT leblancpascal musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT leforestiernadine musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT maisonobethierry musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT meiningervincent musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT robelinlaura musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT salachasfrancois musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT stojkovictanya musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT queringiorgia musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT dumonceauxjulie musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT butlerbrownegillian musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT gonzalezdeaguilarjoseluis musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT duguezstephanie musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles
AT pradatpierrefrancois musclecellsofsporadicamyotrophiclateralsclerosispatientssecreteneurotoxicvesicles