Cargando…
MSAL-Net: improve accurate segmentation of nuclei in histopathology images by multiscale attention learning network
BACKGROUND: The digital pathology images obtain the essential information about the patient’s disease, and the automated nuclei segmentation results can help doctors make better decisions about diagnosing the disease. With the speedy advancement of convolutional neural networks in image processing,...
Autores principales: | Ali, Haider, Haq, Imran ul, Cui, Lei, Feng, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978355/ https://www.ncbi.nlm.nih.gov/pubmed/35379228 http://dx.doi.org/10.1186/s12911-022-01826-5 |
Ejemplares similares
-
Multiscale U-Net with Spatial Positional Attention for Retinal Vessel Segmentation
por: Liu, Congjun, et al.
Publicado: (2022) -
SSCA-Net: Simultaneous Self- and Channel-Attention Neural Network for Multiscale Structure-Preserving Vessel Segmentation
por: Ni, Jiajia, et al.
Publicado: (2021) -
RAFF-Net: An improved tongue segmentation algorithm based on residual
attention network and multiscale feature fusion
por: Song, Haibei, et al.
Publicado: (2022) -
Multiscale Cascaded Attention Network for Saliency Detection Based on ResNet
por: Jian, Muwei, et al.
Publicado: (2022) -
BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound
por: Wu, Yunzhu, et al.
Publicado: (2021)