Cargando…
Think positive: An interpretable neural network for image recognition
The COVID-19 pandemic is an ongoing pandemic and is placing additional burden on healthcare systems around the world. Timely and effectively detecting the virus can help to reduce the spread of the disease. Although, RT-PCR is still a gold standard for COVID-19 testing, deep learning models to ident...
Autor principal: | Singh, Gurmail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978459/ https://www.ncbi.nlm.nih.gov/pubmed/35439663 http://dx.doi.org/10.1016/j.neunet.2022.03.034 |
Ejemplares similares
-
Object or Background: An Interpretable Deep Learning Model for COVID-19 Detection from CT-Scan Images
por: Singh, Gurmail, et al.
Publicado: (2021) -
Semi-ProtoPNet Deep Neural Network for the Classification of Defective Power Grid Distribution Structures
por: Stefenon, Stefano Frizzo, et al.
Publicado: (2022) -
Convolutional Neural Networks for Recognition of Lymphoblast Cell Images
por: Pansombut, Tatdow, et al.
Publicado: (2019) -
Clustering and Recognition of Spatiotemporal Features Through Interpretable Embedding of Sequence to Sequence Recurrent Neural Networks
por: Su, Kun, et al.
Publicado: (2020) -
Influence of graphical weights’ interpretation and filtration algorithms on generalization ability of neural networks applied to digit recognition
por: Kusy, Maciej, et al.
Publicado: (2011)