Cargando…
Tracking and predicting COVID-19 radiological trajectory on chest X-rays using deep learning
Radiological findings on chest X-ray (CXR) have shown to be essential for the proper management of COVID-19 patients as the maximum severity over the course of the disease is closely linked to the outcome. As such, evaluation of future severity from current CXR would be highly desirable. We trained...
Autores principales: | Gourdeau, Daniel, Potvin, Olivier, Archambault, Patrick, Chartrand-Lefebvre, Carl, Dieumegarde, Louis, Forghani, Reza, Gagné, Christian, Hains, Alexandre, Hornstein, David, Le, Huy, Lemieux, Simon, Lévesque, Marie-Hélène, Martin, Diego, Rosenbloom, Lorne, Tang, An, Vecchio, Fabrizio, Yang, Issac, Duchesne, Nathalie, Duchesne, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978501/ https://www.ncbi.nlm.nih.gov/pubmed/35379856 http://dx.doi.org/10.1038/s41598-022-09356-w |
Ejemplares similares
-
Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients
por: Gourdeau, Daniel, et al.
Publicado: (2022) -
FreeSurfer subcortical normative data
por: Potvin, Olivier, et al.
Publicado: (2016) -
Corrigendum to: “FreeSurfer subcortical normative data” [Data in Brief 9 (2016) 732–736]
por: Potvin, Olivier, et al.
Publicado: (2019) -
Braak neurofibrillary tangle staging prediction from in vivo MRI metrics
por: Dallaire-Théroux, Caroline, et al.
Publicado: (2019) -
Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer’s disease
por: Nugent, Scott, et al.
Publicado: (2020)