Cargando…
Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics
The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978532/ https://www.ncbi.nlm.nih.gov/pubmed/35403093 http://dx.doi.org/10.1016/j.bpr.2022.100056 |
_version_ | 1784680984423170048 |
---|---|
author | Rajendran, Madhusudan Ferran, Maureen C. Babbitt, Gregory A. |
author_facet | Rajendran, Madhusudan Ferran, Maureen C. Babbitt, Gregory A. |
author_sort | Rajendran, Madhusudan |
collection | PubMed |
description | The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints. |
format | Online Article Text |
id | pubmed-8978532 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-89785322022-04-04 Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics Rajendran, Madhusudan Ferran, Maureen C. Babbitt, Gregory A. Biophys Rep (N Y) Article The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints. Elsevier 2022-04-04 /pmc/articles/PMC8978532/ /pubmed/35403093 http://dx.doi.org/10.1016/j.bpr.2022.100056 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rajendran, Madhusudan Ferran, Maureen C. Babbitt, Gregory A. Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title | Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title_full | Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title_fullStr | Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title_full_unstemmed | Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title_short | Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
title_sort | identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978532/ https://www.ncbi.nlm.nih.gov/pubmed/35403093 http://dx.doi.org/10.1016/j.bpr.2022.100056 |
work_keys_str_mv | AT rajendranmadhusudan identifyingvaccineescapesitesviastatisticalcomparisonsofshorttermmoleculardynamics AT ferranmaureenc identifyingvaccineescapesitesviastatisticalcomparisonsofshorttermmoleculardynamics AT babbittgregorya identifyingvaccineescapesitesviastatisticalcomparisonsofshorttermmoleculardynamics |