Cargando…
Photoelastic Stress Field Recovery Using Deep Convolutional Neural Network
Recent work has shown that deep convolutional neural network is capable of solving inverse problems in computational imaging, and recovering the stress field of the loaded object from the photoelastic fringe pattern can also be regarded as an inverse problem solving process. However, the formation o...
Autores principales: | Tao, Bo, Wang, Yan, Qian, Xinbo, Tong, Xiliang, He, Fuqiang, Yao, Weiping, Chen, Bin, Chen, Baojia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978563/ https://www.ncbi.nlm.nih.gov/pubmed/35387296 http://dx.doi.org/10.3389/fbioe.2022.818112 |
Ejemplares similares
-
Real-Time Target Detection Method Based on Lightweight Convolutional Neural Network
por: Yun, Juntong, et al.
Publicado: (2022) -
Intelligent Detection of Steel Defects Based on Improved Split Attention Networks
por: Hao, Zhiqiang, et al.
Publicado: (2022) -
Automated segmentation of vertebral cortex with 3D U-Net-based deep convolutional neural network
por: Li, Yang, et al.
Publicado: (2022) -
Staining Invariant Features for Improving Generalization of Deep Convolutional Neural Networks in Computational Pathology
por: Otálora, Sebastian, et al.
Publicado: (2019) -
Retinal Vessel Segmentation Algorithm Based on Residual Convolution Neural Network
por: Xu, Shuang, et al.
Publicado: (2021)