Cargando…
A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional Metagenomic Data
Numerous metagenomic studies aim to discover associations between the microbial composition of an environment (e.g., gut, skin, oral) and a phenotype of interest. Multivariate analysis is often performed in these studies without critical a priori knowledge of which taxa are associated with the pheno...
Autores principales: | Hinton, Andrew L., Mucha, Peter J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978828/ https://www.ncbi.nlm.nih.gov/pubmed/35387076 http://dx.doi.org/10.3389/fmicb.2022.837396 |
Ejemplares similares
-
Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso
por: Wang, Jin-Jia, et al.
Publicado: (2015) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020) -
Feature Selection and Pedestrian Detection Based on Sparse Representation
por: Yao, Shihong, et al.
Publicado: (2015) -
A Multicriteria Approach to Find Predictive and Sparse Models with Stable Feature Selection for High-Dimensional Data
por: Bommert, Andrea, et al.
Publicado: (2017) -
An Enrichment of CRISPR and Other Defense-Related Features in Marine Sponge-Associated Microbial Metagenomes
por: Horn, Hannes, et al.
Publicado: (2016)