Cargando…
Polysaccharide determination and habitat classification for fresh Dendrobiums with hyperspectral imagery and modified RBFNN
This research aimed to study the visual and nondestructive detection of mannose (MN) and Dendrobium polysaccharides (DP) in Dendrobiums by using hyperspectral imaging technology. In order to determine the MN and DP concentrations nondestructively, we built radial basis function neural network (RBFNN...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978902/ https://www.ncbi.nlm.nih.gov/pubmed/35425102 http://dx.doi.org/10.1039/d1ra08577h |
Sumario: | This research aimed to study the visual and nondestructive detection of mannose (MN) and Dendrobium polysaccharides (DP) in Dendrobiums by using hyperspectral imaging technology. In order to determine the MN and DP concentrations nondestructively, we built radial basis function neural network (RBFNN) models based on NIR spectra (874–1734 nm) with a novel chemometric method to calculate the radial bases. And excellent results with the R(P)(2) coefficients of 0.906 and 0.913 were obtained by the MN and DP detection models, respectively. In order to simplify the detection models based on full-range spectra, we designed an innovative genetic algorithm-successive projections algorithm (GA-SPA) strategy to extract the feature bands efficiently in two stages. Based on the feature bands selected by GA-SPA, we established the simplified detection models with the same high performance as those based on full-range spectra. By importing the feature bands of every pixel in the hyperspectral image into the simplified detection models, we successfully generated the distribution maps of MN and DP. Moreover, we also built an RBFNN classifier to categorize the habitats of Dendrobium. And the total classification accuracy reached 0.887. This research makes progress in Dendrobium quality evaluation and spectral detection technology. |
---|