Cargando…

S- and P-type cobra venom cardiotoxins differ in their action on isolated rat heart

BACKGROUND: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Averin, Alexey S., Goltyaev, Mikhail V., Andreeva, Tatyana V., Starkov, Vladislav G., Tsetlin, Victor I., Utkin, Yuri N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978908/
https://www.ncbi.nlm.nih.gov/pubmed/35432493
http://dx.doi.org/10.1590/1678-9199-JVATITD-2021-0110
Descripción
Sumario:BACKGROUND: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTХ-1 and CTХ-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. METHODS: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. RESULTS: Both cardiotoxins at the concentration of 5 μg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. CONCLUSION: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.