Cargando…
Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism
This work outlines the synthesis of copper oxide nanoparticles (CuO-SC) loaded with a number of oxygen vacancies by a fast sodium citrate assisted precipitation method with no need of calcination. X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, time-resolved...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979056/ https://www.ncbi.nlm.nih.gov/pubmed/35425279 http://dx.doi.org/10.1039/d1ra08177b |
_version_ | 1784681091408330752 |
---|---|
author | Liu, Yangqiao Lan, Qing Sun, Shengrui Yang, Qingfeng |
author_facet | Liu, Yangqiao Lan, Qing Sun, Shengrui Yang, Qingfeng |
author_sort | Liu, Yangqiao |
collection | PubMed |
description | This work outlines the synthesis of copper oxide nanoparticles (CuO-SC) loaded with a number of oxygen vacancies by a fast sodium citrate assisted precipitation method with no need of calcination. X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, time-resolved fluorescence lifetime and electrochemical impedance spectra were used to characterize the as-synthesized nanocomposites. The results indicated that the CuO-SC nanoparticles had regular fusiform shape with high surface area, wide light harvesting window, fast charge transport and high carrier concentration. As a result, the catalytic activity of the CuO-SC/peroxymonosulfate (PMS)/visible light (Vis) system for the degradation of rhodamine B (RhB) was much higher than that of as-prepared CuO nano powder in the absence of sodium citrate. Almost 98.0% of the initial RhB dyes was decomposed in 20 min with 0.12 g L(−1) PMS and 0.3 g L(−1) catalyst. Meantime, it exhibited high catalytic stability with little deactivation after four runs and a wide application range of pH. Moreover, RhB can be readily degraded with backgrounds of Cl(−), NO(3)(−), SO(4)(2−), HCO(3)(−) and low concentration of humic acid in a CuO-SC/PMS/Vis system. Combined with the results of electron spin resonance paramagnetic spectroscopy, X-ray photoelectron spectroscopy and radical quenching experiments, holes, superoxide radicals and a small amount of sulfate radicals, hydroxyl radicals and singlet oxygen were involved in the CuO-SC/PMS/Vis system. Furthermore, a possible degradation mechanism based on the synergistic effect of radical reaction and non-radical reaction was proposed based on the above results. |
format | Online Article Text |
id | pubmed-8979056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-89790562022-04-13 Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism Liu, Yangqiao Lan, Qing Sun, Shengrui Yang, Qingfeng RSC Adv Chemistry This work outlines the synthesis of copper oxide nanoparticles (CuO-SC) loaded with a number of oxygen vacancies by a fast sodium citrate assisted precipitation method with no need of calcination. X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, time-resolved fluorescence lifetime and electrochemical impedance spectra were used to characterize the as-synthesized nanocomposites. The results indicated that the CuO-SC nanoparticles had regular fusiform shape with high surface area, wide light harvesting window, fast charge transport and high carrier concentration. As a result, the catalytic activity of the CuO-SC/peroxymonosulfate (PMS)/visible light (Vis) system for the degradation of rhodamine B (RhB) was much higher than that of as-prepared CuO nano powder in the absence of sodium citrate. Almost 98.0% of the initial RhB dyes was decomposed in 20 min with 0.12 g L(−1) PMS and 0.3 g L(−1) catalyst. Meantime, it exhibited high catalytic stability with little deactivation after four runs and a wide application range of pH. Moreover, RhB can be readily degraded with backgrounds of Cl(−), NO(3)(−), SO(4)(2−), HCO(3)(−) and low concentration of humic acid in a CuO-SC/PMS/Vis system. Combined with the results of electron spin resonance paramagnetic spectroscopy, X-ray photoelectron spectroscopy and radical quenching experiments, holes, superoxide radicals and a small amount of sulfate radicals, hydroxyl radicals and singlet oxygen were involved in the CuO-SC/PMS/Vis system. Furthermore, a possible degradation mechanism based on the synergistic effect of radical reaction and non-radical reaction was proposed based on the above results. The Royal Society of Chemistry 2022-01-21 /pmc/articles/PMC8979056/ /pubmed/35425279 http://dx.doi.org/10.1039/d1ra08177b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Liu, Yangqiao Lan, Qing Sun, Shengrui Yang, Qingfeng Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title | Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title_full | Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title_fullStr | Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title_full_unstemmed | Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title_short | Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism |
title_sort | synergistic oxygen vacancy-rich cuo/visible light activation of peroxymonosulfate for degradation of rhodamine b: fast catalyst synthesis and degradation mechanism |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979056/ https://www.ncbi.nlm.nih.gov/pubmed/35425279 http://dx.doi.org/10.1039/d1ra08177b |
work_keys_str_mv | AT liuyangqiao synergisticoxygenvacancyrichcuovisiblelightactivationofperoxymonosulfatefordegradationofrhodaminebfastcatalystsynthesisanddegradationmechanism AT lanqing synergisticoxygenvacancyrichcuovisiblelightactivationofperoxymonosulfatefordegradationofrhodaminebfastcatalystsynthesisanddegradationmechanism AT sunshengrui synergisticoxygenvacancyrichcuovisiblelightactivationofperoxymonosulfatefordegradationofrhodaminebfastcatalystsynthesisanddegradationmechanism AT yangqingfeng synergisticoxygenvacancyrichcuovisiblelightactivationofperoxymonosulfatefordegradationofrhodaminebfastcatalystsynthesisanddegradationmechanism |