Cargando…

First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures

In order to achieve low-cost, high efficiency and stable photoelectric devices, two-dimensional (2D) inorganic halide perovskite photosensitive layers need to cooperate with other functional layers. Here, we investigate the structure, stability and optical properties of perovskite and transition met...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xue, Wu, Liyuan, Cheng, Shuying, Chen, Changcheng, Lu, Pengfei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979070/
https://www.ncbi.nlm.nih.gov/pubmed/35425258
http://dx.doi.org/10.1039/d1ra08574c
_version_ 1784681094808862720
author Li, Xue
Wu, Liyuan
Cheng, Shuying
Chen, Changcheng
Lu, Pengfei
author_facet Li, Xue
Wu, Liyuan
Cheng, Shuying
Chen, Changcheng
Lu, Pengfei
author_sort Li, Xue
collection PubMed
description In order to achieve low-cost, high efficiency and stable photoelectric devices, two-dimensional (2D) inorganic halide perovskite photosensitive layers need to cooperate with other functional layers. Here, we investigate the structure, stability and optical properties of perovskite and transition metal dichalcogenide (TMD) heterostructures using first-principles calculations. Firstly, Cs(2)PbX(4)–PtSe(2) (X = Cl, Br, I) heterostructures are stable because of negative interface binding energy. With the halogen varying from Cl to I, the interface binding energies of Cs(2)PbX(4)–PtSe(2) heterostructures decrease rapidly. 2D Cs(2)PbCl(4)–PtSe(2), Cs(2)PbBr(4)–PtSe(2) and Cs(2)PbI(4)–PtSe(2) heterostructures have an indirect bandgap with the value of 1.28, 1.02, and 1.29 eV, respectively, which approach the optimal bandgap (1.34 eV) for solar cells. In the contact state, the electrons transfer from the PtSe(2) monolayer to Cs(2)PbX(4) monolayer and only the Cs(2)PbBr(4)–PtSe(2) heterostructure maintains the type-II band alignment. The Cs(2)PbBr(4)–PtSe(2) heterostructure has the strongest charge transfer among the three Cs(2)PbX(4)–PtSe(2) heterostructures because it has the lowest tunnel barrier height (ΔT) and the highest potential difference value (ΔEP). Furthermore, the light absorption coefficient of Cs(2)PbX(4)–MSe(2) heterostructures is at least two times higher than that of monolayer 2D inorganic halide perovskites. With the halogen varying from Cl to I, the light absorption coefficients of the Cs(2)PbX(4)–PtSe(2) heterostructures increase rapidly in the visible region. Above all, the Cs(2)PbX(4)–MSe(2) heterostructures have broad application prospects in photodetectors, solar cells and other fields.
format Online
Article
Text
id pubmed-8979070
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-89790702022-04-13 First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures Li, Xue Wu, Liyuan Cheng, Shuying Chen, Changcheng Lu, Pengfei RSC Adv Chemistry In order to achieve low-cost, high efficiency and stable photoelectric devices, two-dimensional (2D) inorganic halide perovskite photosensitive layers need to cooperate with other functional layers. Here, we investigate the structure, stability and optical properties of perovskite and transition metal dichalcogenide (TMD) heterostructures using first-principles calculations. Firstly, Cs(2)PbX(4)–PtSe(2) (X = Cl, Br, I) heterostructures are stable because of negative interface binding energy. With the halogen varying from Cl to I, the interface binding energies of Cs(2)PbX(4)–PtSe(2) heterostructures decrease rapidly. 2D Cs(2)PbCl(4)–PtSe(2), Cs(2)PbBr(4)–PtSe(2) and Cs(2)PbI(4)–PtSe(2) heterostructures have an indirect bandgap with the value of 1.28, 1.02, and 1.29 eV, respectively, which approach the optimal bandgap (1.34 eV) for solar cells. In the contact state, the electrons transfer from the PtSe(2) monolayer to Cs(2)PbX(4) monolayer and only the Cs(2)PbBr(4)–PtSe(2) heterostructure maintains the type-II band alignment. The Cs(2)PbBr(4)–PtSe(2) heterostructure has the strongest charge transfer among the three Cs(2)PbX(4)–PtSe(2) heterostructures because it has the lowest tunnel barrier height (ΔT) and the highest potential difference value (ΔEP). Furthermore, the light absorption coefficient of Cs(2)PbX(4)–MSe(2) heterostructures is at least two times higher than that of monolayer 2D inorganic halide perovskites. With the halogen varying from Cl to I, the light absorption coefficients of the Cs(2)PbX(4)–PtSe(2) heterostructures increase rapidly in the visible region. Above all, the Cs(2)PbX(4)–MSe(2) heterostructures have broad application prospects in photodetectors, solar cells and other fields. The Royal Society of Chemistry 2022-01-14 /pmc/articles/PMC8979070/ /pubmed/35425258 http://dx.doi.org/10.1039/d1ra08574c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Li, Xue
Wu, Liyuan
Cheng, Shuying
Chen, Changcheng
Lu, Pengfei
First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title_full First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title_fullStr First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title_full_unstemmed First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title_short First-principles study on optoelectronic properties of Cs(2)PbX(4)–PtSe(2) van der Waals heterostructures
title_sort first-principles study on optoelectronic properties of cs(2)pbx(4)–ptse(2) van der waals heterostructures
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979070/
https://www.ncbi.nlm.nih.gov/pubmed/35425258
http://dx.doi.org/10.1039/d1ra08574c
work_keys_str_mv AT lixue firstprinciplesstudyonoptoelectronicpropertiesofcs2pbx4ptse2vanderwaalsheterostructures
AT wuliyuan firstprinciplesstudyonoptoelectronicpropertiesofcs2pbx4ptse2vanderwaalsheterostructures
AT chengshuying firstprinciplesstudyonoptoelectronicpropertiesofcs2pbx4ptse2vanderwaalsheterostructures
AT chenchangcheng firstprinciplesstudyonoptoelectronicpropertiesofcs2pbx4ptse2vanderwaalsheterostructures
AT lupengfei firstprinciplesstudyonoptoelectronicpropertiesofcs2pbx4ptse2vanderwaalsheterostructures