Cargando…
Pesticide detection combining the Wasserstein generative adversarial network and the residual neural network based on terahertz spectroscopy
Feature extraction is a key factor to detect pesticides using terahertz spectroscopy. Compared to traditional methods, deep learning is able to obtain better insights into complex data features at high levels of abstraction. However, reports about the application of deep learning in THz spectroscopy...
Autores principales: | Yang, Ruizhao, Li, Yun, Qin, Binyi, Zhao, Di, Gan, Yongjin, Zheng, Jincun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8979129/ https://www.ncbi.nlm.nih.gov/pubmed/35425184 http://dx.doi.org/10.1039/d1ra06905e |
Ejemplares similares
-
Conditional Wasserstein Generative Adversarial Networks for Fast Detector Simulation
por: Blue, John
Publicado: (2021) -
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
por: Friedjungová, Magda, et al.
Publicado: (2020) -
Terahertz wave modulation properties of graphene with different excitation laser power
por: Chen, Shaohang, et al.
Publicado: (2022) -
Precise simulation of electromagnetic calorimeter showers using a Wasserstein Generative Adversarial Network
por: Erdmann, Martin, et al.
Publicado: (2018) -
Panchromatic Image Super-Resolution Via Self Attention-Augmented Wasserstein Generative Adversarial Network
por: Du, Juan, et al.
Publicado: (2021)